Detection of M87 with the VERITAS Observatory

Gary Finnegan
University of Utah
VERITAS collaboration
Introduction

- What is M87 and why should we study it.
- VERITAS Experiment
- Data Analysis
- Significance of our measurement
- Flux – VERITAS vs. HEGRA vs. HESS
- Conclusion
M87

- Messier Object Number 87
- Elliptical Galaxy
- Virgo Cluster
- Distance ~ 16 Mpc

Why Study It?

- Only extragalactic non-blazar that emits TeV γ-rays
 - Jet offset ~ 19° to 33°
- Source emission is controversial
- Time variability of the source
VERITAS γ-Ray Observatory

- Located south of Tucson in Amado Arizona
- Atmospheric Cherenkov Light Detectors
- Fully operational since January 2007
- Sensitive from 10^{10} to 10^{13} eV
- Observed M87 from February to April 2007
- 44 hours of good weather data
Data Analysis

- GrISU
 - Image cleaning
 - Thresholds
 - Minimum Number of Pixels
 - Stereo reconstruction
 - To determine the direction of the event
 - Cosmic-ray rejection
 - 99.9% of all events
 - Background estimate
 - “Wobble mode” – Reflected Region method
 - Statistical significance
 - Li & Ma formula
 - Likelihood ratio method

Separation Distance = \theta
Theta^2 Measurement

[Graph showing data for Simulation, M87 Source, and Background]
Where did the center hit the ground?
Wobble Mode?

Source

Reflected Regions
The Significance

Excess $> 5 \sigma$
The Flux

Flux (% of the Crab nebula)

Hegra (E > 730 GeV)
Whipple (E > 400 GeV)
Hess (E > 400 GeV)
Veritas (E > 250 GeV)
Conclusion

- We do observe γ-rays from M87 in the TeV energy range.
- Rate: $0.11 \pm 0.02 \, \gamma$/min.
- Significance $> 5\sigma$.
- Marginal evidence for flaring.