The University of Utah
Department of Physics & Astronomy at the University of Utah

Hyunjeong Kim Thesis Defense 12/8/11

Thesis Defense

Hyunjeong Kim

Thursday, December 8, 2011
1:00pm (334 JFB)

Title: TBD


In the field of one-dimensional superconductor an open question exists as whether the state of a superconducting wire is determined by local physics or some global (or external) parameters such as normal state resistance, shunt resistor, wire length, dissipative coupling, quantum state or impedance of connected electrodes. To address the question we have studied transport properties of very narrow (9-20nm) homogenous amorphous MoGe wires fabricated by advanced electron-beam lithography in wide range of length 1-25mm. We observed that the wires undergo a superconductor-insulator transition that is controlled by cross sectional area of a wire, i.e. local physics. Mean-field critical temperature decreases exponentially with a wire cross section: the reduction is likely fermionic, due to enhancement of Coulomb repulsion. After losing superconductivity, the resistance of the wires increases monotonically with decreasing temperature and show a conductance dip at zero bias voltage. This zero bias anomaly in insulating wires has signature of both Coulomb blockade and perturbative electron-electron interaction in1D..

Follow Us

Support Us

Make A Difference

Outreach: The Department of Physics & Astronomy at the U

Community Outreach

Scholarships: The Department of Physics & Astronomy at the U

Academic Scholarships

General_Development: The Department of Physics & Astronomy at the U

Other Areas
of Support


Our Newest Program:

Crimson Laureate Society


Click to download full size.

The Department of Physics & Astronomy at the U


Science, it makes us all go


Even Our English Majors Study Physics


The Formula For The Perfect Pass


  • Dept of Physics & Astronomy • 201 James Fletcher Bldg. 115 S. 1400 E., Salt Lake City, UT 84112-0830
  • PHONE 801-581-6901
  • Fax 801-581-4801
  • ©2018 The University of Utah