A. **Information on Hazardous Substances**

It is the responsibility of all researchers to be aware of the health and safety hazards associated with all chemicals involved in their work. Several resources are available to you:

1. **Safety Data Sheets (SDS), formerly Material Safety Data Sheets (MSDS),** that ship with the chemical, and can also be found online at the vendor’s website. The more familiar you are with the language of these datasheets, the more useful they will be to you, so it is good practice to look up these sheets for all chemicals in a reaction.

2. **UCLA** has compiled a large database on **standard operating procedures**, or SOPs, for working with chemicals. This can be accessed here: http://www.sop.ehs.ucla.edu/

 - **Prudent Practices in the Laboratory:** Handling and Management of Chemical Hazards. Great reference for working with chemicals, quenching reactive species, how to cleanup spills, understanding the various hazards found in the lab, and for Laboratory Chemical Safety Summaries (LCSSs).
 - **Wiley Guide to Chemical Incompatibilities.** Great resource for checking the compatibility of chemicals and waste.
 - **Destruction of Hazardous Chemicals in the Laboratory.** Reference for how to quench reactive chemicals as part of a reaction sequence so that they can safely be disposed of with the bulk chemical waste of the research group.

I. **Protective Equipment**

What protective equipment must be used for a particular operation/ laboratory procedures is determined by Supervisors.

A. **Eye Protection**

 To minimize the risk of eye injury, all personnel and visitors **MUST** wear eye protection while in a departmental lab where some chemistry work is done.

 Eye protection is required by law (Code of Federal Regulations, Title 29, Section 1910.133) for all personnel working in labs that work with chemicals. This protection is required whether or not one is performing an experiment. Groups that work with chemicals must maintain a supply of safety glasses for visitors near lab entrances, and group members are responsible for enforcing the policy of wearing eye protection whilst in the lab.

 Safety glasses can be purchased in the stockroom or from VWR or Fischer Scientific. Groups that work with lasers or other light sources should also have a supply of glasses with the appropriate filters.

 Ordinary prescription glasses do not provide adequate protection against injury, as they lack side shields and may break upon impact. If one wears prescription glasses, one can either wear safety goggles on top of the glasses or obtain a pair of prescription safety glasses.

 Contact lenses provide no protection against eye injury and are no substitute for safety glasses. Further, if chemicals get in the eye, the lens can trap the chemical and interfere with first aid and eye-flushing procedures (note, the lens may not come out with eye flushing). It is imperative that each lab have an up-to-date list of members who wear contact lenses so that appropriate measures can be taken in an emergency (ie, removal of the lenses).

 Goggles offer more protection than safety glasses, and should be worn when carrying out operations that have a high risk of splashing chemicals, flying particles, etc.
Face shields must be worn when there is a risk of explosion. This is also encouraged when working with particularly hazardous chemicals that will cause severe burns upon exposure to skin.

B. Lab coats

All personnel working in the lab must have at least one lab coat that is appropriate for their needs. Lab coats must be worn in the chemistry lab at all times.

In most instances, a standard 100% cotton lab coat will be sufficient. These are available for purchase in the chemistry stockroom. Those working with pyrophoric chemicals should also have access to a Nomex flame-retardant lab coat to minimize the risk of catching on fire. These can be purchased from VWR and Fischer.

Lab coats should remain in the lab, and under no circumstances should be worn in the bathrooms.

Lab coats can be laundered on campus (2-day turnaround). Bring a completed campus order form to the basement of the University Hospital, room AA120 between 7AM-3PM (M-F). Lab coats must have pockets emptied and be labeled with the group name. You are responsible for dropping off/picking up laundered coats.

C. Gloves

All personnel working with chemicals must wear gloves to protect themselves from hazards associated with chemicals.

Gloves are to remain in the lab, and under no circumstances should they be worn in the office, hallways, or bathrooms. If one is carrying chemicals from one room to another, then one hand may remain gloved whilst the other is glove-free to open doors. Doorknobs and phones should never be handled with gloves. Other areas, such as computer keyboards, may be deemed “gloved;” this lies at the discretion of each research group and appropriate signage must be provided to ensure compliance by group members and visitors.

In most instances, nitrile gloves will be appropriate, but certain chemicals/reactions may require the use of leather (flame retardant), butyl, silvershield (chemical resistance), or another type of glove. Note, most solvents will eventually permeate and destroy nitrile (and latex) gloves.

When working with pyrophorics or other highly flammable materials, leather gloves (worn above (clean) nitrile gloves) should be used. This is because leather is flame retardant. Leather pilot gloves offer great dexterity and come in a variety of sizes, available from amazon.com.

Kevlar or cut-resistant gloves should be worn (above clean nitrile gloves) when handling potentially explosive chemicals/reactions, or when handling broken glass. These can be purchased from VWR, Fischer, or uline.

A Chemical Resistance Guide for gloves by NORTH is provided in Appendix D and as a pdf on Canvas in the Electronic Safety Library.

D. Aprons

Chemical- resistant aprons might be recommended when operating on hazardous materials and solvents and when working with large quantity of chemical substances.

E. Additional PPE
In certain instances, you may need to use additional or more specialized PPE. This includes the use of blast shields and Kevlar sleeves when working with potentially explosive systems.

F. PPE for your cell phone

If you take your cell phone into the chemistry lab, it must be in a Ziploc (or other) disposable plastic bag. This is so that you do not accidentally contaminate it with chemicals from your hands. You can still use the touchscreen and other functions through the bag. When leaving the lab or putting your phone up to your ear, take the phone out of the plastic bag. Treat the bags as you do disposable gloves.

G. Laboratory Hoods

Fume hoods are used as a local exhaust method to control inhalation hazards and also to contain chemicals. **All personnel must use a lab hood when working with all hazardous substances.**

1. **Operating Instructions**
 - Verify that the fume hood exhaust system and controls are working properly and providing necessary airflow before working in the hood.
 - If in doubt, call OEHS and/or test it using the method described in Prudent Practices in the Laboratory, reproduced in Appendix D.
 - When using the hood, the sash glass opening should be kept at a minimum and the hood should not be operated with the sash in the full open position. The glass should be no higher than 18”.
 - Place chemicals and other materials at least 6” inside the sash.
 - Do not restrict air flow inside the hood. Do not put large items in front of the baffles and remove all materials that are not needed for the immediate work. Large apparatus should be elevated on blocks.
 - Never place your head inside the hood.
 - External air movement can affect the performance of the hood so do not operate near open doors, open windows, or fans. Try to avoid rapid body movements and opening the sash rapidly.
 - When working with highly toxic/smelly chemicals, or any other situation when an increased air flow is desirable, hit the “emergency” key on the controller (see below) to increase the flow. When done, hit the “emergency” key again to exit the increased flow situation.
 - If the alarm goes off, raise/lower the sash and/or declutter the hood until flow levels return to normal. If this fails, silence the alarm (see below) and notify Facility Operations at 801-581-7221 immediately. **Do NOT work in the hood until flow has returned to normal.**
 - For more information on the hoods used in the chemistry department, go to:

2. **Monitor/Alarm System**
All fume hoods in the chemistry department are equipped with a controller/monitor. Below is a description of the various components, and what to do if an alarm goes off.

- **LED Lights (top)**
 - Green light (Normal) is on when the exhaust flow and face velocity are adequate and the fume hood is operating safely.
 - Yellow light is on when the controller is muted or in setback mode. The display will actually read “mute” or “setback” to indicate the meaning of the yellow light.
 - Red light will flash if the controller is in emergency mode and will be continually light when an alarm has gone off. The display screen will indicate this with a message as well.

- **Soft Keys (directly below display screen)**
 - Menu (always displayed)
 - Provides access to menus
 - Password protected
 - Setback (always displayed)
 - Activates the setback or second control set point
 - Reset
 - Resets alarm light, alarm contacts, and audible alarm when in a latched or non-automatic reset mode. If an alarm is reset before the alarm conditions are exited, the controller will reset the alarm but the alarm mode will be re-entered after the alarm delay (time that flow must be above/below the high/low alarm set point before sounding alarm).
 - Resets emergency function after emergency key has been pressed.
 - Clears displayed error messages.
- Normal
 - Appears if unit has been placed into setback mode.
 - Returns controller to normal set point.
- **Quick Keys** (directly below soft keys)
 - Serve as right and left arrows or to increase/decrease volumes.
- **Operator Keys** (two keys with pictures)
 - **Mute Key**
 - Silences an audible alarm.
 - The alarm will remain silent until the mute timeout value has been reached or until unit returns to normal set point.
 - Pressing this twice will permanently mute the alarm.
 - **Emergency Key**
 - Puts the controller into emergency mode. This will maximize the exhaust flow and face velocity by modulating the damper or venture valve to a full open position.
 - “Emergency” will appear on the display, the red alarm light will flash on and off, and the alarm will beep intermittently.
 - To return to normal mode, press the Reset key or the Emergency key again.
- For more information on the controllers, go to:

H. Fire Extinguishers, Fire Blankets, Safety Showers, and Eyewash Facilities

All personnel working with chemicals must know the location of fire extinguishers, safety showers, and eyewash facilities.

II. Classes of Hazardous Substances

Chemicals can be divided into several hazard classes. The hazard class determines how the materials should be stored and handled. All chemical containers, either supplied from a vendor or produced in the lab, must include labels or wording that clearly identifies the hazards associated with that chemical. In addition to the labels, hazard information for the specific chemicals can be found by referencing the Safety Data Sheet (SDS) for that chemical. These are provided by vendors and can also be found online.

All rooms that contain chemicals are marked with yellow Hazard Warning Signs that indicate the types of chemical hazards present, if personal protective equipment is required, if food/drink is allowed, and emergency contact information (Figure 5-1). These signs should be checked annually. To request a new or updated sign fill out the Hazard Warning

Figure 5-1. Exemplary safety signage that is outside of every room that contains chemicals.
There are several classes of hazardous substances, and to streamline classification, the globally harmonized system (GHS) is adapted to classify and label chemicals (available at http://www.unece.org). The GHS classifies substances by the physical, health, and environmental hazards that they pose, and provides signal words (e.g., Danger), hazard statements (e.g., may cause fire or explosion), and standard pictogram-based labels to indicate the hazards and their severity (Figure 5-2). The pictograms, signal word, and hazard statements are standardized under GHS and should be present on all chemical containers from vendors. The signal words, either “Danger” or “Warning,” reflect the severity of hazard posed. Hazard statements are standard phrases that describe the nature of the hazard posed by the material (e.g., heating may cause explosion). These are listed in the SDS of chemicals.

A. **Flammable, Reactive, and Explosive Chemicals**

Flammable Chemicals

Flammable substances are those that readily catch fire and burn in air. They may be solids, liquids, or gases. Common flammable liquids include most lab solvents. An example of a flammable gas is hydrogen. In order for a fire to occur, there must be a fuel, oxygen, and ignition source. The National Fire Protection Association (NFPA) classifies the flammability in five degrees of severity, which is based on the flashpoint. The flashpoint is the minimum temperature at which a liquid has sufficient vapor pressure to form an ignitable mixture in air.

0. Will not burn
1. Must be preheated for ignition; flashpoint above 93 °C
2. Must be moderately heated for ignition; flashpoint above 38 °C
3. Ignition may occur under most ambient conditions; flashpoint below 38 °C
4. Extremely flammable and will readily disperse through air under standard conditions; flashpoint below 23 °C

See Appendix E for a Table of Fire Hazard Ratings for Common Laboratory Chemicals from Prudent Practices. A more detailed discussion can be found in Prudent Practices section 4.D.1.

Flammables must be stored in flammable cabinets if they container size is greater than 1 gallon (4L), and/or the total volume is more than 10 gallons per room. When working with flammables, a flame-retardant lab coat is recommended. It is advised that all clothing be made of natural fibers (eg, cotton, leather, wool) and synthetic fibers such as nylon and polyester be avoided as they melt and drip onto the skin when they burn.
Reactivity Hazards

Reactive substances are materials that decompose via chemical reaction (with for instance, gases found in air). These materials must be stored in a separate flame-resistant storage cabinet. If refrigeration is required, these chemicals should be stored in lab-grade flame- and explosion-proof fridges/freezers. These substances pose an immediate potential hazard and thus proper storage and training is required for each sub-class (see below).

1) Water Reactives and Pyrophorics

Water reactives are chemicals that react violently with water. Examples include alkali metals (eg, lithium and sodium), some organometallic compounds, and metal hydrides. In some instances, the reaction with water produces hydrogen gas, which ignites or reacts explosively with oxygen from the air.

Pyrophorics are a special class of reactivity hazards. The spontaneously combust upon exposure to air and/or water. Examples include alkyl lithium and Grignard reagents and strong reductants.

2) Incompatible Chemicals

Accidental contact of incompatible chemicals can lead to serious explosions and/or the formation of substances that are highly toxic/flammable. Some chemicals are stabilized, rendering them less reactive towards other chemicals, and it is up to the researcher to check the label of all chemicals to determine if the chemical is stabilized or not. Accidental contact most often occurs when chemicals are not properly stored and in waste streams.

3) Explosive hazards

Explosive chemicals are those that decompose under conditions of mechanical shock, elevated temperature, impact, friction, detonation, or other suitable initiation, undergoes rapid chemical change, evolving large volumes of gas. Heat, light, shock, and certain catalysts can all initiate explosive reactions. Certain functional groups are more prone to form explosive compounds, and combining such functional groups in synthesis must be done with caution (Table 5-3). These substances pose an immediate potential hazard and thus proper storage and training is required.
Table 5–3. Functional Groups in Some Explosive Compounds.

From PP, pg 71.
3) **Azos, Peroxides, and Peroxidizables**

Organic azo and peroxides are among the most hazardous substances handled in the lab but are also common reagents. They are generally low-power explosives that are sensitive to sparks, heat, or other accidental ignition. They are far more shock sensitive than TNT.

Many common lab chemicals form peroxides on exposure to oxygen in air. These are classified by how readily they form peroxides (Table 6-2). Compounds that form peroxides on exposure to air include aldehydes, ethers, hydrocarbons with allylic, benzylic, or proargylic hydrogens, conjugated dienes, enynes, and diynes, and saturated hydrocarbons with exposed tertiary hydrogens 0...(Table 5-4).

| Class A: Chemicals that form explosive levels of peroxides without concentration |
| --------------------------------- | --------------------------------- |
| Isopropyl ether | Sodium amide (sodamide) |
| Butadiene | Tetrafluoroethylene |
| Chlorobutadiene (chloroprene) | Divinyl acrylene |
| Potassium amide | Vinylidene chloride |
| Potassium metal | |

| Class B: These chemicals are a peroxide hazard on concentration (distillation/evaporation). A test for peroxide should be performed if concentration is intended or suspected.* (See Chapter 6, section 6.C.3) |
| --------------------------------- | --------------------------------- |
| Acetal | Dioxane (y-dioxane) |
| Cumene | Ethylene glycol dimethyl ether |
| Cyclohexene | Ether (glyme) |
| Cyclooctene | Furan |
| Cyclopentene | Methyl acrylate |
| Dinacetylene | Methyl cyclopentane |
| Dichloropentadiene | Methyl-isobuty ketone |
| Diethyl glycol dimethyl ether | Tetrahydrofuran |
| Diethyl ether | Vinyl ethers |

| Class C: Unsaturated monomers that may autopolymerize as a result of peroxide accumulation if inhibitors have been removed or are depleted* |
| --------------------------------- | --------------------------------- |
| Acrylic acid | Styrene |
| Butadiene | Vinyl acetate |
| Chlorotrifluoroethylene | Vinyl chloride |
| Ethyl acrylate | Vinyl pyridine |
| Methyl methacrylate | |

*These lists are illustrative, not comprehensive.

Sources: Jackson et al. (1970) and Kelly (1996).

Table 5-4: Classes of Chemicals that can form peroxides. From PP page 72.

Class A chemicals are those that form peroxides after prolonged storage, especially after exposure to air without concentration. These should be tested for peroxides before using, and discarded 3 months after opening. If possible, they should be stored in an inert environment such as a glovebox or nitrogen-filled dessicator. Note that peroxides will first form near the boundary with air, which often is hidden in the grooves of the cap, and hence could explode upon opening.

Class B chemicals are those that form peroxides that only become hazardous upon concentration by distillation or evaporation. Many of these chemicals can be purchased with inhibitors that react with oxygen and prevent the formation of peroxides. Researchers should check labels to make sure that this indicator is present; the stockroom sells both stabilized and unstabilized THF and ether. It is recommended that researchers use stabilized reagents when possible, and that if these are not available, that they add a small
amount (~ 10-250 ppm) of BHT (dibutylhydroxytoluene) to the bottle. It is recommended that class B chemicals be tested every 3 months for peroxides.

Class C chemicals are monomers that form peroxides that can initiate explosive polymerization. Inhibited monomers should be tested and discarded after 12 months. Uninhibited monomers should be discarded within 24 hours of opening.

| Ethers containing primary and secondary alkyl groups (never distil an ether before it has been shown to be free of peroxide) |
| Compounds containing benzyllic hydrogens |
| Compounds containing allylic hydrogens (C=C—CH) |
| Compounds containing a tertiary C—H group (e.g., decalin and 2,5-dimethylhexane) |
| Compounds containing conjugated, polyunsaturated alkenes and alkynes (e.g., 1,3-butadiene, vinyl acetylene) |
| Compounds containing secondary or tertiary C—H groups adjacent to an amide (e.g., 1-methyl-2-pyrrolidinone) |

4) **Other Oxidizers**

Oxidizing agents can react violently when they come into contact with reducing materials and sometimes ordinary combustibles. These oxidizing agents include halogens, oxyhalogens, and organic peroxyhalogens, chromates, and persulfates as well as peroxides. In general, inorganic peroxides are stable, but they may form organic peroxides and hydroperoxides in the presence of organics, react violently with water (alkali metal peroxides), and form superperoxides and oxonides (alkali metal peroxides). Perchloric acid is a powerful oxidizing agent and perchloric salts are explosive. Several baths to clean glassware, including pyranna and aqua regia, are strongly oxidizing.

B. Nanomaterials

The health effects of nanomaterials has not been thoroughly investigated. Thus, the uncertainty surrounding the toxicity of nanomaterials merits a cautious approach when working with them. Nanomaterials are any materials or particles with external dimensions of 1-100 nm. Work with nanomaterials requires additional training.

C. Biohazards (there is currently no biohazards in the main locations of Department of Physics : JFB, South Physics, INSCC)

D. Hazards from Radioactivity

Radioactive nuclei are those that are unstable and achieve a more stable form by emission of radiation. The emitted radiation is characterized as particulate (a, b) or electromagnetic (g). Radiation can pose major health risks, and therefore those working with radioactive materials or X-rays must undertake further training. The Radiological Health Department oversees all aspects of radiological safety at the University of Utah. See their website http://www.rso.utah.edu/ for information and radiation safety training.

E. Toxic Chemicals

The chemicals encountered in the laboratory have a broad spectrum of physical, chemical, and toxicological properties and physiological effects. The risks associated with chemicals must be well understood prior to their use in an experiment. The risk of toxic effects is related to both the extent of exposure and the inherent toxicity of a chemical. The extent of exposure is determined by the dose, the duration and frequency of exposure, and the route of exposure. Exposure to even large doses of chemicals
with little inherent toxicity, such as phosphate buffer, presents low risk. In contrast, even small quantities of chemical with high inherent toxicity or corrosivity may cause significant adverse effects. The duration and frequency of exposure are also critical factors in determining whether a chemical will produce harmful effects. A single exposure to some chemicals is sufficient to produce an adverse health effect; for other chemicals repeated exposure is required to produce toxic effects. For most substances, the route of exposure (through the skin, the eyes, the gastrointestinal tract, or the respiratory tract) is also an important consideration in risk assessment. For chemicals that are systemic toxicants, the internal dose to the target organ is a critical factor. Exposure to acute toxicants can be guided by well-defined toxicity parameters based on animal studies and often human exposure from accidental poisoning. The analogous quantitative data needed to make decisions about the neurotoxicity and immunogenicity of various chemicals is often unavailable.

Toxic effects of chemicals occur after single (acute), intermittent (repeated), or long-term repeated (chronic) exposure. An acutely toxic substance causes damage as the result of a single short-duration exposure. Hydrogen cyanide, hydrogen sulfide, and nitrogen dioxide are examples of acute toxins. In contrast, a chronically toxic substance causes damage after repeated or long-duration exposure or causes damage that becomes evident only after a long latency period. Chronic toxins include all carcinogens, reproductive toxins, and certain heavy metals and their compounds. Many chronic toxins are extremely dangerous because of their long latency periods: the cumulative effect of low exposures to such substances may not become apparent for many years. Many chemicals may be hazardous both acutely and chronically depending on exposure level and duration.

All laboratory personnel must understand certain basic principles of toxicology and recognize the major classes of toxic and corrosive chemicals.

Among the thousands of laboratory chemicals, a wide spectrum of doses exists that are required to produce toxic effects and even death. For most chemicals, a threshold dose has been established (by rule or by consensus) below which a chemical is not considered to be harmful to most individuals.

One way to evaluate the acute toxicity (i.e., the toxicity occurring after a single exposure) of laboratory chemicals involves their lethal dose 50 (LD50) or lethal concentration 50 (LC50) value. The LD50 is defined as the amount of a chemical that when ingested, injected, or applied to the skin of a test animal under controlled laboratory conditions kills one-half (50%) of the animals. The LD50 is usually expressed in milligrams or grams per kilogram of body weight.
In evaluating the hazards associated with work with toxic substances, it is important to note that a number of factors influence the response of individuals to exposure to toxic compound. For example, people are rarely exposed to a single biologically active substance. With this point in mind, it is noteworthy that one toxin can influence the effect of a second. Several classic examples are the dramatically enhanced lung carcinogenicity of combined exposure to asbestos and tobacco smoke, and the potentiating activity of phorbol esters on skin carcinogenesis initiated by polycyclic hydrocarbons. There are insufficient data at present to identify which substances potentiate (or possibly even antagonize) the effects of others, but it is important for laboratory workers to be cognizant that such interactions can occur. This point underscores the importance of maintaining good laboratory practices at all times, and with all chemicals.

As a final point, it is also noteworthy that the response of an organism to a toxin typically increases with the dose given, but the relationship is not always a linear one. As one example, some carcinogenic alkylating agents show a biphasic dose-mutation curve resembling a hockey stick pointed upward from left to right. It is now well established that the resistance of many organisms to mutagenesis by low doses of simple alkylating agents is due in large measure to a genoprotective system; once that system saturates, at the breakpoint in the curve, the organism becomes much more sensitive to the toxin. This example illustrates two points. First, we have systems that protect against low doses of many toxins (not all, but many). But, as a second, cautionary note, it is pointed out that between individuals there are differences in the levels of genoprotection and other toxin defense systems. These differences are in part genetically determined but also are determined in part by the aggregate exposure of the individual to all chemicals within and outside of the laboratory. Accordingly, it is difficult to estimate exactly how sensitive a given person will be on a given day to a given substance. This point urges once again that a cautious approach be taken in handling all chemicals in the workplace.

Types of Toxins

1) *Irritants*
Irritants are noncorrosive chemicals that cause reversible inflammatory effects (swelling and redness) on living tissue by chemical action at the site of contact. A wide variety of organic and inorganic chemicals are irritants, and consequently, skin and eye contact with all reagent chemicals in the laboratory should be minimized. Examples include formaldehyde, iodine, and benzoyl chloride.

2) Corrosive Substances

Corrosive substances are those that cause destruction of living tissue by chemical action at the site of contact and are solids, liquids, or gases. Corrosive effects occur not only on the skin and eyes but also in the respiratory tract and, in the case of ingestion, in the gastrointestinal tract as well. Corrosive materials are probably the most common toxic substances encountered in the laboratory. Corrosive liquids are especially dangerous because their effect on tissue is rapid. Bromine, sulfuric acid, aqueous sodium hydroxide solution, and hydrogen peroxide are examples of highly corrosive liquids. Corrosive gases are also frequently encountered. Gases such as chlorine, ammonia, chloramine, and nitrogen dioxide damage the lining of the lungs, leading, after a delay of several hours, to the fatal buildup of fluid known as pulmonary edema. Finally, a number of solid chemicals have corrosive effects on living tissue. Examples of common corrosive solids include sodium hydroxide, phosphorus, and phenol. If dust from corrosive solids is inhaled, it causes serious damage to the respiratory tract. There are several major classes of corrosive substances. Strong acids such as nitric, sulfuric, and hydrochloric acid cause serious damage to the skin and eyes. Hydrofluoric acid is particularly dangerous and produces slow-healing painful burns (see Chapter 6, section 6.G.6 in Prudent Practices). Strong bases, such as metal hydroxides and ammonia, are another class of corrosive chemicals. Strong dehydrating agents, such as phosphorus pentoxide and calcium oxide, have a powerful affinity for water and cause serious burns on contact with the skin. Finally, strong oxidizing agents, such as concentrated solutions of hydrogen peroxide, also have serious corrosive effects and should never come into contact with the skin or eyes.

3) Allergens and Sensitizers

A chemical allergy is an adverse reaction by the immune system to a chemical. Such allergic reactions result from previous sensitization to that chemical or a structurally similar chemical. Once sensitization occurs, allergic reactions result from exposure to extremely low doses of the chemical. Some allergic reactions are immediate, occurring within a few minutes after exposure. Anaphylactic shock is a severe immediate allergic reaction that results in death if not treated quickly. Delayed allergic reactions take hours or even days to develop, the skin is the usual site of such delayed reactions, becoming red, swollen, and itchy. Delayed chemical allergy occurs even after the chemical has been removed; contact with poison ivy is a familiar example of an exposure that causes a delayed allergic reaction due to uroshiol. Also, just as people vary widely in their susceptibility to sensitization by environmental allergens such as dust and pollen, individuals also exhibit wide differences in their sensitivity to laboratory chemicals. Because an allergic response is triggered in a sensitized individual by an extremely small quantity of the allergen, it may occur despite personal protection measures that are adequate to protect against the acute effects of chemicals. Laboratory personnel should be alert for signs of allergic responses to chemicals. Examples of chemical substances that cause allergic reactions in some individuals include diazomethane; dicyclohexylcarbodiimide; formaldehyde and phenol derivatives; various isocyanates (e.g., methylene diphenyl diisocyanate (MDI) or toluene diisocyanate (TDI), used in adhesives, elastomers, and coatings); benzylic and allylic halides; metals including nickel, beryllium, platinum, cobalt, tin, and chromium; and acid anhydrides such as acetic anhydrides.

4) Asphyxiants

Asphyxiants are substances that interfere with the transport of an adequate supply of oxygen to vital organs of the body. The brain is the organ most easily affected by oxygen starvation, and exposure to asphyxiants leads to rapid collapse and death. Simple asphyxiants are substances that displace oxygen from the air being breathed to such an extent that adverse effects result. Acetylene, carbon dioxide, argon, helium, ethane, nitrogen, and methane are common asphyxiants. Certain other chemicals have the ability to combine with hemoglobin, thus reducing the capacity of the blood to transport oxygen. Carbon monoxide, hydrogen cyanide, and certain organic and inorganic cyanides are examples of such substances.
5) **Neurotoxins**

Neurotoxic chemicals induce an adverse effect on the structure or function of the central or peripheral nervous system, which can be permanent or reversible. The detection of neurotoxic effects may require specialized laboratory techniques, but often they are inferred from behavior such as slurred speech and staggered gait. Many neurotoxins are chronically toxic substances with adverse effects that are not immediately apparent. Some chemical neurotoxins that may be found in the laboratory are mercury (inorganic and organic), organophosphate pesticides, carbon disulfide, xylene, trichloroethylene, and n-hexane.

6) **Toxins affecting other target organs**

Target organs outside the reproductive and neurological systems are also affected by toxic substances in the laboratory. Most of the chlorinated hydrocarbons, benzene, other aromatic hydrocarbons, some metals, carbon monoxide, and cyanides, among others, produce one or more effects in target organs. Such an effect may be the most probable result of exposure to the particular chemical. Although this chapter does not include specific sections on liver, kidney, lung, or blood toxins, many of the LCSSs mention those effects in the toxicology section.

Particularly Hazardous Substances (PHS)

It is imperative that researchers are familiar with particularly hazardous substances, which, if mishandled, can significantly impact health or even life. These are: substances with a high degree of acute toxicity, select carcinogens, and reproductive toxins. They require additional handling precautions.

1) **Compounds with a High Degree of Acute Toxicity**

Compounds that have a high degree of acute toxicity comprise the first category of particularly hazardous substances as defined by the OSHA Lab Standard. Acutely toxic agents include certain corrosive compounds, irritants, sensitizers (allergens), hepatotoxins, nephrotoxins, neurotoxins, agents that act on the hematopoietic systems, and agents which damage the lungs, skins, eyes, or mucous membranes (see Part V-A for definitions of these classes of hazardous substances). Substances which have a high degree of acute toxicity are interpreted by OSHA as being substances which “may be fatal or cause damage to target organs as the result of a single exposure or exposures of short duration.” “Toxic” and “highly toxic” agents are defined by OSHA regulations as substances with median lethal dose (LD$_{50}$) values in the ranges discussed in Table 10-1:

<table>
<thead>
<tr>
<th></th>
<th>Toxic</th>
<th>Highly Toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral LD$_{50}$ (albino rats)</td>
<td>50-500 mg/kg</td>
<td><50 mg/kg</td>
</tr>
<tr>
<td>Skin Contact LD$_{50}$ (albino rabbits)</td>
<td>200-1000 mg/kg</td>
<td><200 mg/kg</td>
</tr>
<tr>
<td>Inhalation LC$_{50}$ (albino rats)</td>
<td>200-2000 ppm/air</td>
<td><200 ppm/air</td>
</tr>
</tbody>
</table>

Table 5-6: Acute Toxicity Hazard Level.

The following lists some of the compounds that may be in current use in UU chemistry department laboratories and which have a high degree of acute toxicity. (We are not aware if such compounds are used in the Department of Physics)

- acrolein
- arsine
• chlorine
• diazomethane
• diborane (gas)
• hydrogen cyanide
• hydrogen fluoride
• methyl fluorosulfonate
• nickel carbonyl

Note: the above list is not intended to be complete, and it is the responsibility of the researcher (in consultation with their laboratory supervisor) to evaluate each compound involved in their work and to determine whether it is a substance with a high degree of acute toxicity.

2) Select Carcinogens

Certain potent carcinogens are classified as “select carcinogens” and treated as PHS’s. A select carcinogen is defined in the OSHA Lab Standard as a substance that meets one of the following criteria:

• It is regulated by OSHA as a carcinogen,
• It is listed as “known to be a carcinogen” in the latest Annual Report on Carcinogens published by the National Toxicology Program (NTP),
• It is listed under Group 1 (“carcinogenic to humans”) by the International Agency for Research on Cancer (IARC), or
• It is listed under IARC Group 2A or 2B, (“probably carcinogenic to humans”) or under the category “reasonably anticipated to be a carcinogen” by the NTP, and causes statistically significant tumor incidence in experimental animals in accordance with any of the following criteria: (i) after inhalation exposure of 6-7 hours per day, 5 days per week, for a significant portion of a lifetime to dosages of less than 10 mg/m3; (ii) after repeated skin application of less than 300 mg/kg of body weight per week; or (iii) after oral dosages of less than 50 mg/kg of body weight per day.

The following lists the substances meeting criteria given above:

• 2-acetylaminofluorene
• acrylamide
• acrylonitrile
• 4-aminobiphenyl
• arsenic and certain arsenic compounds
• asbestos
• azathioprine
• benzene
• benzidine
• bis(chloromethyl) ether
• 1,4-butanediol dimethylsulfonate (myleran)
• chlorambucil
• chloromethyl methyl ether
• chromium and certain chromium compounds
• coal-tar pitches
• coal tars
• conjugated estrogens
• cyclophosphamide
• 1,2-dibromo-3-chloropropane
• 3,3’-dichlorobenzidine (and its salts)
• diethylstilbestrol
• dimethylaminoazobenzene
• dimethyl sulfate
• ethylene dibromide
• ethylene oxide
• ethylenimine
• formaldehyde
• hexamethyolphosphoramide
• hydrazine
• melphalan
• 4,4’-methylenedinitrobenzene (and its salts)
• mustard gas
• N,N’-bis(2-chloroethyl)-2-naphthylamine (chlornaphazine)
• α-naphthylamine
• β-naphthylamine
• nickel carbonyl
• 4-nitrobenzene
• N-nitrosodimethylamine
• β-propiolactone
Note: the above list is not intended to be complete, and it is the responsibility of the researcher (in consultation with their laboratory supervisor) to evaluate each compound involved in their work and to determine whether it should be handled as a select carcinogen.

A list of carcinogenic compounds can be found at the CDC website: http://www.cdc.gov/niosh/topics/cancer/npotocca.html.

3) Reproductive Toxins

Reproductive toxins act during pregnancy and cause adverse effects on the fetus; these effects include embryolethality (death of the fertilized egg, embryo or fetus), malformations (teratogenic effects), and postnatal functional defects. Examples of embryotoxins include thalidomide and certain antibiotics such as tetracycline. Women of childbearing potential should note that embryotoxins have the greatest impact during the first trimester of pregnancy. Because a woman often does not know that she is pregnant during this period of high susceptibility, special caution is advised when working with all chemicals, especially those rapidly absorbed through the skin (e.g., formamide).

Information on reproductive toxins can be obtained from Material Safety Data Sheets, by contacting OEHS, and by consulting the Catalog of Teratogenic Agents, Sixth Edition; Shepard, T. H.; Johns Hopkins University Press, Baltimore, 1989. Also see Beyler, R. E. and Meyers, V. K. J. Chem. Ed. 1982, 59, 759-763 for a discussion of “What Every Chemist Should Know About Teratogens.” The following Table lists some common materials that are suspected to be reproductive toxins; in some laboratories it will be appropriate to handle these compounds as particularly hazardous substances.

The following lists the substances meeting criteria given above:

- arsenic and certain arsenic compounds
- lead compounds
- benzene
- mercury compounds
- cadmium and certain cadmium compounds
- toluene
- carbon disulfide
- vinyl chloride
- ethylene glycol monomethyl and ethyl ethers
- xylene
- ethylene oxide

- thorium dioxide
- treosulphan
- vinyl chloride
Note: The above list is not intended to be complete, and it is the responsibility of the researcher (in consultation with their laboratory supervisor) to evaluate each compound involved in their work and to determine whether it should be handled as a reproductive toxin.

III. Protecting Yourself From Chemicals

A. Routes of Exposure

Exposure to chemicals in the laboratory occurs by several routes: (1) inhalation, (2) contact with skin or eyes, (3) ingestion, and (4) injection. Important features of these different pathways are detailed below.

Inhalation

Toxic materials that enter the body via inhalation include gases, the vapors of volatile liquids, mists and sprays of both volatile and nonvolatile liquid substances, and solid chemicals in the form of particles, fibers, and dusts. Inhalation of toxic gases and vapors produces poisoning by absorption through the mucous membranes of the mouth, throat, and lungs and also damages these tissues seriously by local action. Inhaled gases and vapors pass into the capillaries of the lungs and are carried into the circulatory system, where absorption is extremely rapid. Because of the large surface area of the lungs in humans (approximately 75 m²), they are the main site for absorption of many toxic materials.

Contact with skin or eyes

Chemical contact with the skin is a frequent mode of injury in the laboratory. Many chemicals injure the skin directly by causing skin irritation and allergic skin reactions. Corrosive chemicals cause severe burns. In addition to causing local toxic effects, many chemicals are absorbed through the skin in sufficient quantity to produce systemic toxicity. The main avenues by which chemicals enter the body through the skin are the hair follicles, sebaceous glands, sweat glands, and cuts or abrasions of the outer layer. Absorption of chemicals through the skin depends on a number of factors, including chemical concentration, chemical reactivity, and the solubility of the chemical in fat and water. Absorption is also dependent on the condition of the skin, the part of the body exposed, and duration of contact. Differences in skin structure affect the degree to which chemicals are absorbed. In general, toxicants cross membranes and thin skin (e.g., scrotum) much more easily than thick skin (e.g., palms). Although an acid burn on the skin is felt immediately, an alkaline burn takes time to be felt and its damage goes deeper than the acid. When skin is damaged, penetration of chemicals increases. Acids and alkalis injure the skin and increase its permeability. Burns and skin diseases are the most common examples of skin damage that increase penetration. Also, hydrated skin absorbs chemicals better than dehydrated skin. Some chemicals such as dimethyl sulfoxide actually increase the penetration of other chemicals through the skin by increasing its permeability.

Contact of chemicals with the eyes is of particular concern because the eyes are sensitive to irritants. Few substances are innocuous in contact with the eyes; most are painful and irritating, and a considerable number are capable of causing burns and loss of vision. Alkaline materials, phenols, and acids are particularly corrosive and can cause permanent loss of vision. Because the eyes contain many blood vessels, they also are a route for the rapid absorption of many chemicals.

Ingestion

Many of the chemicals used in the laboratory are extremely hazardous if they enter the mouth and are swallowed. The gastrointestinal tract, which consists of the mouth, esophagus, stomach, and small and large intestines, can be thought of as a tube of variable diameter (approximately 5 m long) with a large surface area (approximately 200 m²) for absorption. Toxicants that enter the gastrointestinal tract must be absorbed into the blood to produce a systemic injury, although some chemicals are caustic or irritating to the gastrointestinal tract tissue itself. Absorption of toxicants takes place along the entire gastrointestinal tract, even in the mouth, and depends on many factors, including the physical properties of the chemical and the speed at which it dissolves. Absorption increases with surface area, permeability,
and residence time in various segments of the tract. Some chemicals increase intestinal permeability and thus increase the rate of absorption. More chemical will be absorbed if the chemical remains in the intestine for a long time. If a chemical is in a relatively insoluble solid form, it will have limited contact with gastrointestinal tissue, and its rate of absorption will be low. If it is an organic acid or base, it will be absorbed in that part of the gastrointestinal tract where it is most fat soluble. Fat-soluble chemicals are absorbed more rapidly and extensively than water-soluble chemicals.

Injection

Exposure to toxic chemicals by injection does not occur frequently in the laboratory, but it occurs inadvertently through mechanical injury from sharp objects such as glass or metal contaminated with chemicals or syringes used for handling chemicals. The intravenous route of administration is especially dangerous because it introduces the toxicant directly into the bloodstream, eliminating the process of absorption. Non-laboratory personnel, such as custodial workers or waste handlers, must be protected from exposure by placing sharp objects in special sharps containers and not ordinary scrap baskets. Hypodermic needles with blunt ends are available for laboratory use to minimize puncture risks.

IV. Chemical Storage, Inventory, Transport, and Waste

A. Chemical Storage

Most chemicals will be stored in vented, fire-resistant cabinets, either free standing or under hoods. Additional storage on shelves and fridges may be required. All chemicals must be stored in a secondary container (for example, large plastic bins that have sufficient volume to contain spills). In most instances, several chemicals that are compatible will be stored together in a single secondary bin.

The chemicals should be organized in a systematic manner that is mirrored in the chemical inventory. Details of how chemicals are organized are at the discretion of each research group, but chemicals MUST be segregated by compatibility. Additionally, it is recommended that each cabinet/storage area be labeled on the outside with the storage group and/or chemicals inside.

The segregation shown in Figure 6-1 is suggested though may not be practical due to space and quantity. Under no circumstances should incompatible chemicals be stored in the same cabinet together. An alternative storage system that works well for existing storage systems is to have a list of incompatible chemicals on each storage unit, with chemicals inside highlighted. Researchers who add chemicals are responsible for checking the compatibility of the new chemical with what is stored, and if needed, highlighting a new chemical type. A partial list of chemical incompatibilities is found as Appendix F.

Flammables must be stored in flame-retardant cabinets or fridges. Chemicals that are explosive hazards should be stored in an explosion-proof fridge or cabinet. When not in use, gas cylinders must be double-chain to the wall, stored with the cap on and regulator off. Peroxide forming chemicals should be stored in the dark.
Labeling

All chemicals must be labeled and placed in secondary containers in cabinets. The outside cabinets should also be labeled (see above).

Chemicals should be labeled with the date of arrival and the date opened.

It is highly advised that peroxide-forming chemicals, those that require further training by the group, and any additional precautions have an additional colored label on the cap. For instance, all peroxide forming chemicals may be labeled with pink lab tape on the caps, warning lab personnel of the potential hazard, and allowing for easy identification of these chemicals that must be periodically tested for peroxides. Chemicals that can only be used after additional group training may be labeled with green tape, warning lab personnel that they can only use the chemicals after additional training. It is at the discrepancy of research groups whether they adopt this additional system, and how detailed/elaborate it is. If adapted, a key for the color-coding must be present on the outside of all chemical storage units.

B. Chemical Inventory

It is the responsibility of each group to keep the inventory up-to-date with the name and CAS number for all chemicals, location (building and room number), quantity (for example 3 – 250 mL bottles), physical

STORAGE GROUPS

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Compatible Organic Bases</td>
</tr>
<tr>
<td>B</td>
<td>Compatible Pyrophoric & Water Reactive Materials</td>
</tr>
<tr>
<td>C</td>
<td>Compatible Inorganic Bases</td>
</tr>
<tr>
<td>D</td>
<td>Compatible Organic Acids</td>
</tr>
<tr>
<td>E</td>
<td>Compatible Oxidizers including Peroxides</td>
</tr>
<tr>
<td>F</td>
<td>Compatible Inorganic Acids not including Oxidizers or Combustible</td>
</tr>
<tr>
<td>G</td>
<td>Not Intrinsically Reactive or Flammable or Combustible</td>
</tr>
<tr>
<td>J*</td>
<td>Poison Compressed Gases</td>
</tr>
<tr>
<td>K*</td>
<td>Compatible Explosive or other highly Unstable Material</td>
</tr>
<tr>
<td>L</td>
<td>Non-Reactive Flammable and Combustible, including solvents</td>
</tr>
<tr>
<td>X*</td>
<td>Incompatible with ALL other storage groups</td>
</tr>
</tbody>
</table>

*Storage Groups J, K and X: Consult EHS Department For specific storage - consult manufacturer’s MSDS

Figure 7-2. Compatible storage group classification. From PP.
state (solid, liquid, gas), and date of purchase or receipt. The inventory should be reviewed and updated at least annually.

Lab members can view and edit their group’s inventory. New lab members should contact their group safety officer to gain access. The inventory can be downloaded as an excel spreadsheet and printed in case of a power outage or stored on the desktop of a group computer in case the internet goes down.

C. Transportation of Chemicals

All chemicals must be transported in appropriate secondary containers. This includes picking up chemicals from the stockroom, and taking chemicals from one part of the building to others.

Under no circumstances should personnel ride on the elevator with liquid nitrogen. This is because in case of a spill and/or elevator failure, asphyxiation is a real danger. Liquid nitrogen (in any quantity) should be transported using the stairs. If an elevator is required, it is the responsibility of the researcher transporting the liquid nitrogen to ensure that no one gets on the elevator with the liquid nitrogen. This is readily done by posting personnel at each floor between the originating/destination floor. See signs in elevators for further information.

D. Chemical Waste

The University of Utah has adopted the University Hazardous Waste Rule (aka subpart K). This rule allow for modified handling of unwanted hazardous materials to facilitate laboratory scale operations. All containers must be labeled “Unwanted Materials” not “waste.”

The best strategy for managing laboratory waste aims to maximize safety and minimize environmental impact, and considers these objectives from the time of purchase.

The initial responsibility for proper handling of unwanted materials rests with trained laboratory personnel. These individuals are in the best position to know the chemical and physical properties of the materials they have used or synthesized. They are responsible for evaluating hazards, providing information necessary to make an accurate waste determination, and assisting in the evaluation of appropriate strategies for management, minimization, and disposal.

The overriding principle governing the prudent handling of laboratory waste is that no activity should begin unless a plan for the disposal of nonhazardous and hazardous waste has been formulated.

There are four tiers to waste management to reduce its environmental impact: pollution prevention and source reduction; reuse or redistribution of unwanted, surplus materials; treatment, reclamation, and recycling of materials within the waste; and disposal through incineration, treatment, or land burial. The first tier of this strategic hierarchy incorporates the principles of green chemistry: pollution prevention and source reduction. Clearly, the best approach to laboratory waste is preventing its generation. Examples include reducing the scale of laboratory operations, reducing the formation of waste during laboratory operations, and substituting nonhazardous or less hazardous chemicals in chemical procedures.

The second strategic tier is to reuse unwanted material, redistribute surplus chemicals, and reduce hazards. Practices that implement this strategy include purchasing only what is needed, keeping chemical inventories to prevent the purchase of duplicates, and reusing excess materials. Sanitary sewer disposal of chemicals is not allowed. Occupational and environmental health and safety (OEHS) staff determine the point at which the chemical becomes regulated as a waste and ensures that requirements are met. The determination of whether a waste is regulated as hazardous is made by OEHS.

Collection and Storage (including how to fill out tag, get trained with OEHS) (Copied from Chem department, might need a revision)

1) Go to https://OEHS.utah.edu/
2) Go to Resource Center – then Forms/Checklists. Scroll down to **Lab Management System – Account Request / Password Reminder**. Click it, and follow the instructions to receive lab management system login information.

3) Once you receive your login information go to the Lab Management System (**http://oehs.utah.edu/topics/lab-management-system** or find under Topics on the OEHS website). Feel free to change your password from the automatically generated one from the email.

4) Once logged in, click “Unwanted Materials Pickup.”

5) On the next screen click the “Add Request” button

6) Enter the building and room number into the location box and fill out the rest of the form

7) On the next page, you need to select the type of waste, containers, etc. and fill out the form. You need a new form for each separate type of waste container.
 - a. Organic wastes are represented by a representative example of the majority of the halogenated or non-halogenated waste in the container in percentages. (ex. 40% acetone, 10% DCM, 10% ether, 10% hexanes, 10% Ethyl Acetate, 5% toluene, 5% THF, 5% methanol, 5% pentane)
 - b. If there are special waste concerns with a particular container (ex. Explosive compounds, etc.) be sure to make a separate form for that container.
 - c. Used vacuum pump oil is requested as “100% used pump oil”
 - d. Sharps waste is listed under biological waste

8) Once you have entered all of the lab’s waste information and requested an appropriate number of replacement disposal containers, submit the request.

9) On the next screen, you must download the pdf of the reports and print the tag for each separate container. The pdf has a huge tag, so it may be easier to snapshot and copy it in adobe and paste and then shrink it on a word document, considering the system only generates one tag for each different type of waste.

10) Tape these tags to the appropriate waste containers in the appropriate room and wait for OEHS to come pick them up and drop off new containers.

V. Emergency Preparedness

A. **Fire Extinguishers, Fire Blankets, Safety Showers, and Eyewash Facilities**

Fire Extinguishers

The University of Utah does not require that personnel extinguish fires that occur in their area, though under certain circumstances, researchers who have been trained to use extinguishers can put out fires. Personnel are not allowed to use extinguishers unless they have been properly trained to do so. Contact the University Fire Marshal at 801-581-6590 for information on the next extinguisher training session.

Fire extinguishers are located in the hallways (A/B/C). All extinguishers are electronically monitored. Any time an extinguisher is used, contact Facilities Maintenance Fire Prevention Shop at 801-581-7221 so that it can be inspected and recharged.

There are various types of fires; those pertinent to the chemistry department are:

- **A (for ash):** fires that are comprised of solid combustibles, including paper/trash can fires

- **B (for barrel):** flammable liquids/gases, including solvents

- **C (for current):** electrical fires
There are several types of extinguishers that can be used to put out different types of fires. All extinguishers are labeled with the type of fire they can put out. Details on those found within the Department of Chemistry are given below.

Carbon Dioxide extinguishers are effective against Class B and C fires (burning liquids and electrical fires). They are less effective for type A fires (burning paper), and should not be used for type D fires (burning metals and pyrophoric organometallic/main group reagents). These extinguishers are clean, leaving no chemical residue behind.

Dry Powder extinguishers are effective against Class A, B and C and should not be used for type D fires. They contain sodium bicarbonate and leave a powder behind.

Met-L-X extinguishers are effective for class D fires. These are available upon request from OEHS.

Sand can be used to smother any type of fire, and is particularly useful for putting out small type D fires. Note, smothering type D fires does not quench the pyrophoric material, which must still be properly quenched (see Appendix F).

To put out a fire, using an extinguisher, remember PASS: Pull, Aim, Squeeze, Sweep. A/B/C extinguishers should be aimed in front of the flames, whilst D extinguishers should be aimed on top of the flames.

Fire Blankets

Fire blankets are located in certain labs, but are not recommended as a first aid measure; smothering a person on fire can result in more severe burns. If a person is on fire, it is recommended that they be moved to the emergency shower immediately and/or for the burning clothes removed.

Emergency Showers and Eyewash Stations

Emergency showers are located within all labs, and should be checked periodically by the group safety officer to ensure proper function. Issues should be reported to Facility Operations at 801-581-7221. Modesty should never be an issue in an emergency, and all researchers should devise a plan that they have discussed with their lab peers/PI on what they will do if they must strip and use the safety shower (clothes on fire, major chemical exposure to skin, etc.). For instance, it may be that all those of the opposite gender leave and get help, while those of the same gender use the fire blanket as a makeshift curtain. Personnel are encouraged to keep a spare change of clothes in the office for these instances.

Eyewash stations are located near all safety showers, and should be checked weekly by the group safety officer to ensure proper function and to flush out any bacteria that grow in stagnant water. Issues should be reported to OEHS. Note, eyewash stations will not necessarily flush out contact lenses, so it is up to each researcher to notify the rest of the research group that he/she wears contact lenses. This information can readily be stored as part of the emergency contact information.

B. General Emergency Preparation

• Every group should have a safety officer/fire warden, whose responsibility is to familiarize lab members with emergency and evacuation procedures, carry out monthly visual inspections of the safety equipment, and conduct “sweeps” of the working area during evacuations. They also keep track of emergency contact info.
• **All lab members MUST have cell phone #s of every group member programmed in their cell phones.** Note: University policy is that all labs must have functioning land line telephone in, or close to, the lab.

• Every group member should be trained on using the safety equipment in the lab as part of the initial safety training to work in the group.

• For work with dangerous chemicals or procedures, researchers must be trained by appropriate personnel and checked out by the safety officer/PI. This must be documented within the group.

• Every lab should post a map of where safety equipment is on lab doors. This includes spill kits, fire extinguishers, first aid kits, safety showers, eye wash stations, and fire blankets.

• Every lab should have Campus Emergency Flip Chart from OEHS. Updated flipcharts can be requested by contacting our Department of Physics representative at OEHS, Brandon Newell brandon.newell@oehs.utah.edu.

• Under no circumstances should exits be blocked (in the lab or hallways).

• Each lab should have an up to date hazard warning sign posted, with numbers of who to contact in case of an emergency. To request new signage go to http://oehs.utah.edu/resource-center/forms/hazard-warning-signage-questionnaire

• Additionally, each lab should have up-to-date emergency contact information. It is highly recommended that this information be shared with neighboring research groups. These lists should be kept in an envelope taped to the door so that they are easily accessible when evacuating.

• Always be prepared with what you are doing in the lab- know the hazards, minimize your exposure to chemicals, do not under-estimate the risks, and be prepared for accidents.

• Hood sashes should list what is going on in the hood (reactions), with hazards and what to do in case of an emergency, and/or notebook name/number/page. Hoods should also have a phone number for who to call in case of an emergency. Alternatively, an open notebook page detailing this information near the hood is also appropriate.

• Do not work alone- if you must, have someone check in on you or call you periodically and NEVER use chemicals that have increased hazards, such as pyrophorics, etc.

C. Emergency Procedures

• To summon emergency police, fire, or ambulance, call campus police at 911 or 9-911 from a campus phone. Report the location of the emergency (building and room), and be as specific as possible about nature of emergency and what is needed. If you are unsure, you may get a “full force” response.

• You can call OEHS for advice and counsel. OEHS personnel are available 24/7 – during normal business hours by calling 801-581-6590 and after hours by calling UUPD dispatch at 801-585-2677 and asking them to page OEHS Occ Hygiene on-call.

• Notify other workers in the area of the nature of the emergency, if necessary, activate the fire alarm to order evacuation of the building.
• If a coworker has ingested a toxic substance, follow the first aid information on the SDS and seek medical attention.

• If a coworker is bleeding profusely, elevate the wound above the level of the heart and apply pressure with a clean cloth or your hand. Seek immediate medical assistance. Note - if there is glass shrapnel in wound, do not remove.

 Do not touch a person in contact with a live electrical circuit- disconnect the power first.

D. Evacuation

Departmental Evacuation Plan

Follow the departmental guideline for evacuation and meeting points.

Assessing the lab prior to evacuation

During an evacuation, personnel should assume that they will not return for several hours. Therefore, it is the responsibility of lab personnel to ensure that the lab is safe. This may require instruments be turned off, reactions placed under inert atmospheres, chemicals be put away, and reactions/procedures stopped (for example, distillations) as long as it is safe to do so.

E. Power Outages

In the case of power outages, it is advised that personnel secure the lab and evacuate. Researchers should ensure that chemicals are properly stored, reactions/equipment in a stable state, etc. It may be advised to unplug equipment if power surges are a concern.

F. Treatment of Injured or Contaminated Persons

• Ingestion: Call emergency personnel (911). Do not encourage vomiting except under the advice of a physician. Call the Poison Control Center (800-222-1222) immediately and consult the SDS for the appropriate action. Save all chemical containers and a small amount of vomitus, if possible, for analysis. Stay with the victim until emergency medical assistance arrives. Send a copy of the MSDS with the victim.

• If a chemical gets in the eye of a victim, flush for a minimum of 15 minutes with eyewash station. Note that soft contact lenses will not necessarily be flushed out, so the victim (or you!) may have to remove contact lenses (hard or soft). Hold the individual’s eyelids away from the eyeball, and instruct him or her to move the eye up and down and sideways to wash thoroughly behind the eyelids. Follow first aid by prompt treatment by medical personnel or an ophthalmologist who is acquainted with chemical injuries. Send a copy of the MSDS with the victim. Note: these eye wash stations should be flushed weekly to ensure proper function.

• For spills covering small amounts of skin: immediately flush with water for at least 15 minutes. If there is no visible burn, wash with water and soap, and remove any jewelry/clothing in the area. Check the SDS to see if any delayed effects should be expected (example). It is advised to seek medical attention for even minor chemical burns.
• For spills on clothes: The emergency responder should wear appropriate PPE during emergency treatment to avoid exposure. Do not attempt to wipe the clothes. To avoid contamination of the victim’s eyes, do not remove the victim’s eye protection before emergency treatment. Quickly remove all contaminated clothing, shoes, and jewelry while using the safety shower. Seconds count; do not waste time or limit the showered body areas because of modesty. Take care not to spread the chemical on the skin or, especially, in the eyes. Cut off garments such as pullover shirts or sweaters to prevent spreading the contamination, especially to the eyes. Immediately flood the affected body area with water for at least 15 minutes. Resume if pain returns. Get medical attention as soon as possible. The affected person should be escorted and should not travel alone. Send a copy of the SDS with the victim. If the institution’s SDS is digital, hardcopies of the relevant information should be provided to responders. If the SDS is not immediately available, it is vitally important that the person in charge convey the name of the chemical to the medical personnel.

• In the event that use of a shower or eyewash is warranted we recommend that someone call 911 immediately – that way medical personnel should be on scene by the time the 15 minute flush is done.

G. Spill Containment and Clean-Up

Pre-planning

Personnel should be familiar with the properties (physical, chemical, and toxicological) of hazardous substances before working with them. Research groups should develop SOPs and contingency plans on what to do with the accidental release of chemicals that pose additional risks. Researchers should ensure that they have the necessary safety equipment, protective apparel, and spill control materials readily available.

• Every research group that works with hazardous substances should have a group spill kit that is tailored to deal with the potential hazards found in the lab. Spill kits can be purchased from OEHS (Make sure the lab has a spill kit that contains appropriate chemicals/supplies to handle spills. Spill kits are available for purchase from OEHS (http://oehs.utah.edu/resource-center/forms/spill-kit-order-form). The kits might include:

 • Spill pillows and pads: used for absorbing solvent and corrosives (not HF). Note: yellow → corrosives, grey → universal (available in the stockroom)
 • Inert absorbents such as vermiculite and sand
 • Neutralizing agents: sodium bicarbonate (acids), and citric acid or sodium bisulfate (for alkaline spills)
 • Equipment such as large plastic scoops, brooms, pails, bags, dustpans, mops, buckets, etc.
 • Sulfur (for mercury) (NOTE: OEHS sells Hg spill kits)

Major Spills

Major hazardous material spills should be reported to OEHS immediately (801-581-6590) to obtain professional assistance and support to control and clean up the spilled material. These spills are defined as those that pose a significant threat to safety, health, or the environment. They often involve a highly toxic material or materials spilled in large quantities or that pose significant fire hazards, cannot be recovered before release into the environment, or involve a spill in a public area such as a hallway. After reporting, personnel should stand by at a safe distance to guide responders and spill cleanup experts to the spill area, and open all hood sashes. Prevent other personnel from entering the area.

Minor Spills
Minor spills are spills of material that is not highly toxic, is not spilled in large quantity, does not present a significant fire hazard, can be recovered before it is released into the environment, and is not in a public area such as a hallway. Minor spills can usually be cleaned up by 1-2 people using basic spill kit materials. (Note custodians are not allowed to clean-up such spills). OEHS can offer technical advice, but is not responsible for spill cleanup. The Laboratory Chemical Safety Sheets and Prudent Practices gives advice on how to clean up a variety of spills. If large quantities of solvent are on the lab floor, shut off power to lab (to avoid sparks with electrical equipment/major fires) prior to clean up. Also, open all hoods in the lab to help remove fumes.

General Procedure to Clean Up Spills

1. **Treat Injured and Contaminated Personnel first.**

 If an individual is injured/contaminated with a hazardous substance, treating them takes precedence over spill control measures – see section B.6 above on Treatment of injured or contaminated persons.

2. **Notify Personnel in the area**

 Alert other co-workers in the lab of the accident and the nature of the chemicals involved. In the event of the release of highly toxic gases or volatile material, evacuate the lab and post personal at each entrance to prevent other workers from entering the contaminated area. In the case of a major spill, it may be appropriate to activate the fire alarm to evacuate the building.

3. **Clean up spills promptly**

 How you clean up the spill will depend on the size, location, and what it is. Some general guidelines for cleaning up minor spills are given below. For more information, see “Tested Methods for the Handling of Small-Scale Spills,: M.-A. Armour, D. Ashick, and J. Konrad, *Chemical Health and Safety 1999*, 6, Jan-Feb, 24-27.

 - **Materials of low flammability that are not volatile or have low toxicity (this includes inorganic acids, and caustic bases):**

 For clean-up, wear appropriate protective apparel. Neutralize the spills with solutions of neutralizing agent (to avoid excessive fumes). Absorb the material, and dispose of waste accordingly.

 - **Flammable solvents:**

 Fast action is required. This category includes pentanes, ethers, etc. Immediately alert other workers in the laboratory, extinguish all flames, and turn off any spark-producing equipment (Note, should not have electrical equipment on ground, and/or outlets/extension cords near ground). In some instances, you may want to turn off power to lab (main switch is next to doors in NHEB). As quickly as possible, the spilled solvent should be soaked up with spill pads/pillows, which should be sealed in containers and disposed of accordingly.

 - **Highly Toxic Substances:**

 Do not attempt clean-up by yourself. Notify other personnel of spill, evacuate the area, and contact OEHS to obtain assistance in evaluating the hazards involved.
H. Leaking Gas Cylinders

- Occasionally a gas cylinder or one of its components will develop a leak (usually at the valve threads, safety device, valve stem, and valve outlet). If you suspect a leak, do not use a flame for detection; use soapy water. If the leak cannot be remedied by tightening, contact OEHS.

- Note, when using gas cylinders, it is critical that you use regulators with the correct CGA number (no exceptions!) to avoid unnecessary leaks, injury, damage to tank, and $$$. See Appendix for a table of CGA Connection numbers.

- When attaching a regulator, do not use Teflon tape.

- Note, gases that pose toxic hazards (such as CO) should have detectors attached to the tank ($20 at Home Depot for CO detector).

- For minor leaks, do the following:
 - Flammable, inert, or oxidizing gases: Move the cylinder to an isolated area (away from combustible material if the gas is flammable or an oxidant) and post signed describing the hazards/state warnings. If possible, move the cylinder into a fume hood. Call OEHS for assistance if needed (they have a cylinder leak response kit that can handle most leaks).
 - Corrosive gases: May increase the size of the leak as they are released and some are also oxidants or flammable. Move the cylinder into an isolated, well-ventilated area and use suitable means to direct the gas into an appropriate chemical neutralizer. Post signs that state the hazards and warnings. Note: for these gases, always use a regulator with a cross-purge assembly (for an inert gas) to minimize the risks of developing leaks in the regulator. Also, promptly flush out/remove regulator (esp. if without a cross-purge assembly) from tank, to avoid permanently having regulator on tank (example). Corrosives regulators are very $$$$!
 - Toxic gases: Follow the same procedure as for corrosive gases.

- If the nature of the leaking gas or the size of the leak constitutes a more serious hazard, evacuate personal and call campus police from a distance to obtain emergency assistance (pull the fire alarm if a MAJOR leak).

I. Fires

Researchers should be familiar with the types of fires: A, B, C, D (see section 8). Only researchers who have completed fire extinguisher training should attempt to use a fire extinguisher. If a researcher is not trained or is not comfortable putting out the fire, the fire alarm should be pulled. Fires that typically can be put out by researchers include:

- Fires from quenching small amounts of pyrophoric reagents
- Trash can fire (move to an empty hood before extinguishing)
- Fires in hoods (if large or there are many flammables present, lower sash and call for help).

Contact the Fire Marshall (801-585-9122) to set up a fire extinguisher training.
VI. Working with Chemicals

Researchers must follow the general guidelines given below for working with any chemicals within the department. These are general guidelines, and it is expected that researchers are familiar with the entirety of this Chemical Hygiene Plan (CHP). Chemicals that pose additional risks have more detailed procedures, which are given in the following sections.

A. General Procedure for working with chemicals

1. Be smart and prepared. Follow basic safety rules and be cognizant of the potential hazards. This includes being familiar with the SDS and any additional safety information provided by the chemical supplier (some of this is only available online). Know of the work occurring around you so that you are prepared to help in case of an emergency.

2. Minimize your exposure. Wear appropriate PPE, and do not touch “clean” surfaces with gloved hands or contaminate the office with a lab coat. Work in a fume hood or glovebox when applicable/possible.

3. Do not underestimate the risks. Assume the product of your reaction is more toxic/hazardous than the sum of the reagents.

4. Be prepared for accidents. Know what you will do in case the reaction explodes, runs away, catches fire, or spills. This includes knowing where extinguishers and spill kits are and the appropriate methods for cleaning up. Write this information on the hood sash, along with the reaction being run, and notebook page/number.

5. Use and maintain equipment and glassware. Glassware with star cracks can implode/explode under pressure. Glassware with impurities can catalyze side reactions, which may be dangerous/lead to explosions. Equipment that is not properly maintained can lead to frustration or contamination.

6. Practice good housekeeping. There is a correlation between orderliness and the level of safety in the lab. The following should always apply:

 - Never obstruct access to exits and emergency equipment.
 - Store coats, bags, etc. in the appropriate area, not the lab.
 - Do not use the floor as a storage area.
 - Keep drawers and cabinets closed when not in use.
 - Properly label experiments in progress, and glassware that is used to store chemicals.
 - Store chemical containers in order and neatly.
 - Keep chemical containers closed when not in use.
 - Secure gas cylinders (double chained).
 - Return chemicals to their storage location when not in use.
 - Keep containers at least 2 inches away from edge of benches, to minimize knocking hazards.
• Keep your working area clean and free of clutter. Particularly, keep flammables away, including paper towels.

• Make sure all those connections are properly secure, including those to chilled water.

7. **Do not work alone.** If you are the only one present in your lab and are setting up/quenching a reaction, find a friend from another lab to come and watch you. *Under no circumstances should undergraduate and first year graduate students be working alone.*

8. **Work conducted outside of normal hours.** For experiments that will run when no one is around, make sure the hood sash is labeled with the following:

• Name/contact information.

• Details of experiment (usually just the reaction, with ALL products and details on solvent, temperature, etc.)

• Hazards associated with chemicals

• What to do in an emergency

• Notebook page/number of researcher.

Alternatively, if this information is all included in the lab notebook, leaving the notebook open to the specific experiment on the bench top is appropriate.

9. **Store Chemicals Appropriately.** Ensure that chemicals are properly stored.

10. **Transporting chemicals.** Make sure to transport all chemicals in an appropriate secondary container.

11. **Dispose of waste appropriately.** Make sure to dispose of waste in the appropriate stream. Make sure you are familiar with the incompatibilities of the chemicals, and know all products of the reaction before disposing of it (see Appendix F).

B. General Procedure for working with chemicals that have moderate to high chronic toxicity or high acute toxicity

For work with chemicals that have increased toxicity risks, follow the general procedure given below.

1. **Follow the procedures outlined above.**

2. **Know the toxic risks.** It is the responsibility of the researcher to consult the appropriate literature to know the toxic properties (dose, effects) of the substances being used. If the substance is known to be highly toxic, than no less than two people should be present at all times.

3. **Zero skin contact.** Consult the chart in Appendix C on glove permeability to choose appropriate gloves, and change them as soon as you know you contaminated them with solvent or the chemical substance, and/or frequently. Wear two gloves if needed. Make sure you are wearing a lab coat and clothes that covers your entire body. If splashing is a concern, use a safety shield. Always wash your hands and arms with soap and water after using these chemicals. In the event of accidental skin contact, flush the affected areas with water and seek medical attention as soon as possible.

4. **Use lab hoods.** Inhalation of toxic vapors, mists, gases, or dusts can produce poisoning by absorption through the mucous membrane of the mouth, throat, and lungs, and can seriously damage these tissues by local action. Inhaled gases or vapors may pass rapidly into the capillaries of the lungs and be carried into the circulatory system. This absorption can be extremely rapid. Procedures involving
volatile toxic substances and those operations involving solid or liquid toxic substances that may result in the generation of aerosols must be conducted in a hood or other suitable containment device. The hood should have been evaluated previously to establish that it is providing adequate ventilation and has an average face velocity of not less than 80 linear ft/min.

5. Be prepared for accidents. The laboratory worker should always be prepared for possible accidents or spills involving toxic substances. To minimize hazards from accidental breakage of apparatus or spills of toxic substances in the hood, containers of such substances should generally be stored in pans or trays made of polyethylene or other chemically resistant material and (particularly in large scale work) apparatus should be mounted above trays of the same type of material. Alternatively, the working surface of the hood can be fitted with a removable liner of adsorbent plastic-backed paper. Such procedures will contain spilled toxic substances in a pan, tray, or adsorbent liner and greatly simplify subsequent cleanup and disposal.

If a major release of a particularly hazardous substance occurs outside the hood, then the room or appropriate area should be evacuated and necessary measures taken to prevent exposure of other workers. OEHS should be contacted (801-581-6590 or 801-585-2677 after hours) for assistance and equipment for spill cleanup; Contaminated clothing and shoes should be thoroughly decontaminated or incinerated.

6. Don’t contaminate the environment. Vapors that are discharged from experiments involving particularly hazardous substances should be trapped or condensed to avoid adding substantial quantities of toxic vapor to the hood exhaust air. The general waste disposal procedures outlined above should be followed; however, certain additional precautions should be observed when waste materials are known to contain substances of moderate or high toxicity. Volatile toxic substances should never be disposed of by evaporation in the hood. If practical, waste materials and waste solvents containing toxic substances should be decontaminated chemically by some procedure that can reasonably be expected to convert essentially all of the toxic substances to nontoxic substances (for a discussion, see Prudent Practices for Disposal of Chemicals from Laboratories, pp. 56-100 and Destruction of Hazardous Chemicals in the Laboratory by G. Lunn and E. B. Sansone). If chemical decontamination is not feasible, the waste materials and solvents containing toxic substances should be stored in closed, impervious containers so that personnel handling the containers will not be exposed to their contents. In general, liquid residues should be contained in glass or polyethylene bottles. All containers of toxic wastes should be suitably labeled to indicate the contents (chemicals and approximate amounts) and the type of toxicity hazard that contact may pose. For example, containers of wastes from experiments involving appreciable amounts of weak or moderate carcinogens should carry the warning: CANCER SUSPECT AGENT. All wastes and residues that have not been chemically decontaminated in the exhaust hood where the experiment was carried out should be disposed of in a safe manner that ensures that personnel are not exposed to the material.

7. Recordkeeping. Every research group in the department is required to maintain a list of all particularly hazardous substances in use in their laboratories. The Group Safety Officer is responsible for creating and maintaining this list. In addition, records that include amounts of material used and names of workers involved should be kept as part of the laboratory notebook record of all experiments involving particularly hazardous substances.

8. Restrict access to areas where particularly hazardous substances are in use. Those operations involving particularly hazardous substances in which there is the possibility of the accidental release of harmful quantities of the toxic substance must be carried out in designated areas. Specific fume hoods should be designated areas for work with particularly hazardous substances and should be posted with special warning signs indicating that particularly toxic substances may be in use.
Working with extremely toxic substances. (First, inform the safety committee and the Department Chair and get a permission to work with these compounds)

All of the procedures and precautions described above should be followed when working with substances known to have high chronic toxicity. In addition, when such substances are to be used in quantities in excess of a few milligrams to a few grams (depending on the hazard posed by the particular substance), the additional precautions described below should also be used.

A substance that has caused cancer in humans or has shown high carcinogenic potency in test animals (but for which a regulatory standard has not been issued by OSHA) will generally require the use of additional precautions. However, this determination will also depend on other factors, such as the physical form and the volatility of the substance, the kind and duration of exposure, and the amount of material to be used. Besides strong carcinogens, substances in the high chronic toxicity category include potent reproductive toxins and certain heavy metal compounds such as dimethylmercury and nickel carbonyl. Prior to work with these types of substances, researchers should consult with their PI and the safety committee/OEHS to ensure proper training.

C. General Procedure for working with flammables

Flammable substances are one of the most common hazardous materials found in chemistry labs. These materials readily catch fire and burn in air. Flammable liquids do not burn, rather the vapors of the liquid readily catch fire. How readily a flammable liquid will catch fire is characterized by its flashpoint, which is the minimum temperature at which a liquid gives off enough vapor in sufficient concentration to form an ignitable mixture with air near the surface. Many common lab solvents have flashpoints less than ambient temperature, and thus can pose a major risk, particularly if large spills are not contained.

In addition to following the general guidelines given above, the following should be considered when handling flammable solvents:

1. Handle flammables in areas free of ignition sources. This includes open flames, electrical equipment (esp. motors), static electricity, and for certain chemicals, heat.

2. Never heat a flammable substance with an open flame.

3. When transferring flammable liquids in metal equipment, static-generated sparks should be avoided by grounding the system. This is particularly true for solvent kegs and other large-volumes of flammables.

4. Use a hood for proper ventilation. Make sure that the hood is free of clutter. Flammable liquids should always be covered, and the hood free of material that can readily spread a fire, such as paper towels.

5. Safety goggles, gloves, and a cotton or nomex labcoat should be worn.

6. Be prepared for spills. In case of a major spill on the floor, immediately turn the main power supply of the lab off, solicit help, and clean up with spill pads. In case of a major spill in the hood, immediately unplug all electrical equipment and clean up with spill pads.

7. Know what extinguisher to use in case of a fire. Any that is labeled with a “B” will work for putting out flammable substances. Note - if pyrophoric metals are also present, then a “D” extinguisher or sand is required.
D. General Procedure for working with explosive hazards (Get special permission form the Chair to work on with these compounds)

E. Materials that Require Special Attention Because of Toxicity, Reactivity, Explosivity, or Chemical Incompatibility.

Below we list several chemicals that require additional precautions. Those that are considered particularly hazardous substances are indicated with PHS.

- **Acetylenic compounds**, both organic and inorganic (especially heavy metal salts), can be explosive and shock sensitive. At pressures of 2 atm or greater and moderate temperature, acetylene (C2H2) has been reported to decompose explosively, even in the absence of air. Because of these dangers, acetylene must be handled in acetone solution and never stored alone in a cylinder.

- **Acrylonitrile** (PHS) is regulated as a probable human carcinogen by OSHA and also is listed as a substance with a moderate degree of acute toxicity (oral LD₅₀ (rat) is 78 mg/kg). The PEL (permissible exposure limit) is 2 ppm; the TLV-TWA (threshold limit value – time-weighted average) is also 2 ppm. Acrylonitrile is severely irritating to the eyes and mildly irritating to the skin; prolonged contact with the skin can lead to burns. Acrylonitrile is a highly flammable liquid; its vapor forms explosive mixtures with air. Work with acrylonitrile should be conducted in a fume hood to prevent exposure by inhalation; splash goggles and impermeable gloves should be worn at all times to prevent eye and skin contact.

- **Alkyllithium compounds** are highly reactive and pyrophoric. Violent reactions may occur on exposure to water, carbon dioxide, and other materials. Alkyllithium compounds are highly corrosive to the skin and eyes. tert-Butyllithium solutions are the most pyrophoric and may ignite spontaneously on exposure to air. Contact with water or moist materials can lead to fires and explosions. These compounds should be stored and handled under an inert atmosphere in areas that are free from ignition sources.

- **Aluminum chloride** (AlCl₃) should be considered a potentially dangerous material. If moisture is present, sufficient decomposition may form hydrogen chloride (HCl) and build up considerable pressure. If a bottle is to be opened after long storage, it should first be completely enclosed in a heavy towel.

- **Ammonia and amines.** Ammonia (NH₃) reacts with iodine to give nitrogen triiodide, which explodes on touch. Ammonia reacts with hypochlorites (bleach) to give chlorine. Mixtures of ammonia and organic halides sometimes react violently when heated under pressure. Ammonia is combustible. Inhalation of concentrated fumes can be fatal. Ammonia and amines can react with heavy metal salts to produce explosive fulminates.

- **Azides**, both organic and inorganic, and some azo compounds can be heat and shock sensitive. Azides such as sodium azide can displace halide from chlorinated hydrocarbons such as dichloromethane to form highly explosive organic polyazides; this substitution reaction is facilitated in solvents such as dimethyl sulfoxide.

- **Benzene** (PHS). Exposure to benzene can lead to both chronic as well as acute toxic effects. The acute toxic effects from skin contact, inhalation, or ingestion of benzene are low. In humans, acute inhalation exposure to benzene can produce a picture of acute delirium, characterized by excitement, euphoria, and restlessness and, if the exposure is significantly high, the symptoms may progress to depression, drowsiness, stupor, and even unconsciousness. The concentration required to produce this symptom complex is 1000 ppm or higher. These concentrations will also produce irritation of the eye, nose, and respiratory tract.
Chronic inhalation exposure to 25-50 ppm of benzene can produce changes in the blood picture that include macrocytosis, decrease in the total red blood count, decrease in platelets, decrease in the hemoglobin concentration, or decrease in leukocytes. Any or all of these hematologic effects may be seen in any individual. Usually, the worker will be asymptomatic while these effects are observed in the blood picture. Continued exposure at somewhat higher concentrations (probably more than 100 ppm) can insidiously result in more severe blood disorders that include leukopenia or even aplastic anemia, with symptoms of headaches, dizziness, loss of appetite, nervousness, irritability, and perhaps bleeding manifestations, i.e., nosebleeds, easy bruising, or hematuria. Severe cases may have fatal outcomes. Recently, a number of reports have been published that describe leukemia in workers who have had aplastic anemia. These cases have been reported in Italy and Turkey in workers exposed to grossly high concentrations of benzene. In addition, there is some indication that an excess of leukemia may occur without a preceding picture of aplastic anemia in workers who have been repeatedly exposed to benzene at concentrations of more than 100 ppm.

The current OSHA PEL (permissible exposure limit) for benzene is 1 ppm as an 8-hour time-weighted average (TWA), 25 ppm for a ceiling concentration for time period such that the 8-hour TWA is not exceeded, and a peak above the ceiling of 50 ppm for no more than 10 min. The ACGIH TLV-TWA value is 10 ppm. Benzene is a flammable liquid and should not be exposed to heat or flame. An explosion hazard also exists when its vapors are exposed to flame. Benzene may react vigorously with oxidizing agents such as bromine pentafluoride, chlorine, chromic acid, nitryl perchlorate, oxygen, ozone, perchlorates, aluminum chloride plus fluorine perchlorate, sulfuric acid plus permanganates, potassium peroxide, silver perchlorate plus acetic acid, and sodium peroxide.

- **Bis(chloromethyl)ether (BCME), Chloromethyl Methyl Ether, and Other Chloromethyl Ether Derivatives** (PHS). Because of the high volatility of bis(chloromethyl)ether (BCME), inhalation is the route of exposure that presents the greatest hazard to humans. BCME vapor is severely irritating to the skin and mucous membranes and can cause corneal damage that heals slowly. The substance has caused lung cancer in humans. BCME is highly toxic to animals via inhalation: LD50 (rats, 7-hour inhalation) = 7 ppm. It is moderately toxic via the oral and skin routes: LD50 (rats, oral) = 280 mg/kg; LD50 (rabbits, skin) = 368 mg/kg. Its vapors are strongly irritant to the eyes of rats. Rats and hamsters subjected to 10 or 30 6-hour exposures of 1 ppm BCME showed evidence of tracheal and bronchial hyperplasia, as well as effects on the central nervous system. BCME is carcinogenic to mice following inhalation, skin application, or subcutaneous administration. In newborn mice, it is carcinogenic by inhalation and subcutaneous administration. BCME is a lung carcinogen in humans.

The TLV (threshold limit value) for BCME is 0.001 ppm (1 ppb; 5 mg/m3). The substance is classified by ACGIH as a human carcinogen. OSHA has classified BCME as a cancer-suspect agent and has stringent regulations (29 CFR 1910.1008) for its use if its concentration in a material exceeds 0.1%.

- **Boron halides** are powerful Lewis acids and hydrolyze to strong protonic acids.

- **Carbon disulfide** (CS₂) is both very toxic and very flammable; mixed with air, its vapors can be ignited by a steam bath or pipe, a hot plate, or a light bulb.

- **Carbon Monoxide** (PHS). Carbon monoxide is a direct and cumulative poison. It combines with the hemoglobin of the blood to form a relatively stable compound (carboxyhemoglobin) rendering it useless as an oxygen carrier. When about one-third of the hemoglobin has entered into such combination, the victim dies. Since carbon monoxide is odorless, colorless, and tasteless, it has no warning properties. Exposure to 1500-2000 ppm CO in air for 1 hour is dangerous, and exposure to 4000 ppm is fatal in less than 1 hour. Headache and dizziness are the usual
symptoms of CO poisoning, but occasionally the first evidence of poisoning is the collapse of the patient. Pregnant women are more susceptible to the effects of carbon monoxide exposure.

Carbon monoxide should be used only in areas with adequate ventilation. A trap or vacuum break should always be used to prevent impurities from being sucked back into a CO cylinder. **Cylinders with regulators attached MUST have a working detector on it (these can be purchased from Home Depot or other hardware stores).**

Carbon Tetrachloride (PHS). The current OSHA PEL (permissible exposure limit) and ACGIH TLV (threshold limit value) for carbon tetrachloride are 2 ppm as an 8-hour time-weighted average and 5 ppm as a ceiling for any period of time provided the 8-hour average is not exceeded. ACGIH states that skin contact may account for a substantial part of toxic responses.

The acute toxicity of carbon tetrachloride by all routes of exposure is low to moderate (oral LD50 in rats is 2,350 mg/kg). Carbon tetrachloride shows carcinogenic effects in animal studies and is listed in group 2B ("possible human carcinogen") by IARC. In most of its uses in Chemistry Department laboratories it need not be treated as a particularly hazardous substance. All operations should be carried out in a hood, not only because of the carcinogenicity of the substance, but also because of its other toxic effects (e.g., hepatotoxicity) and its volatility. Nitrile rubber is the recommended material for gloves and other protective clothing.

Chlorine (PHS). C1₂ is highly toxic and may react violently with hydrogen (H₂) or with hydrocarbons when exposed to sunlight.

Chlorine is a severe irritant of the eyes, skin, and mucous membranes. Inhalation may cause coughing, choking, nausea, vomiting, headache, dizziness, difficulty breathing, and delayed pulmonary edema, which can be fatal. Exposure to ca. 500 ppm for 30 minutes may be fatal and 1000 ppm can be lethal after a few breaths. Chlorine is highly irritating to the eyes and skin; exposure to 3-8 ppm causes stinging and burning of the eyes, and contact with liquid chlorine or high concentrations of the vapor can cause severe burns. Chlorine can be detected by its odor below the permissible limit; however, because of olfactory fatigue, odor may not always provide adequate warning of the presence of harmful concentrations of this substance. There is no evidence for carcinogenicity or reproductive or developmental toxicity of chlorine in humans. The LC50 for inhalation (rat) is 293 ppm (1 h); the PEL (permissible exposure limit) is 1 ppm while the TLV-TWA (threshold limit value – time-weighted average) is 0.5 ppm.

Chlorine is noncombustible but is a strong oxidizer and will support combustion of most flammable substances, sometimes with explosive violence. Cylinders of chlorine should be stored in locations appropriate for compressed gas storage and separated from incompatible compounds such as hydrogen, acetylene, ammonia, and flammable materials. Because of its high toxicity, laboratory operations using chlorine must be carried out in a hood.

Chloroform (PHS). The acute toxicity of chloroform is classified as moderate by ingestion and low by inhalation. Inhalation exposure to chloroform at concentrations greater than 1000 ppm can produce dizziness, nausea, and headaches. At higher concentrations, there can be disorientation and delirium progressing to unconsciousness. Such high exposure can also produce liver and possibly kidney damage. It is believed that chloroform can sensitize the heart to adrenaline, so it may cause cardiac arrhythmias and possibly death. High concentrations of the vapor can produce conjunctivitis. Liquid chloroform in the eyes will produce a painful corneal injury that usually heals in several days.

Chronic exposure to chloroform at concentrations of 100-200 ppm has been reported to produce large livers. Continued contact with the skin can produce drying, fissuring, and inflammation. In experimental studies, prolonged ingestion of high levels of chloroform by mice resulted in liver
cancers and by rats, kidney tumors. Chloroform has produced embryo toxicity in experimental animals. It is a suspected human carcinogen.

Although the fire hazard of chloroform is slight, exposure to heat or flame can result in generation of phosgene gas. Chloroform reacts violently with acetone in the presence of base, and with aluminum, disilane, lithium, magnesium, nitrogen tetroxide, potassium, perchloric acid plus phosphorus pentoxide, potassium hydroxide plus methanol, potassium tert-butoxide, sodium, sodium hydroxide plus methanol, sodium methylate, and sodium hydride.

The current OSHA PEL (permissible exposure limit) for chloroform is 50 ppm as an 8-hour time-weighted average. This standard is also a ceiling level that should not be exceeded for any 15-min period. The ACGIH currently recommends that chloroform be treated as a suspect human carcinogen and recommends an 8-hour time weighted average exposure of 10 ppm.

Although chloroform has caused tumors in animals, its potency is low. In most of its uses in the Chemistry Department it need not be treated as a particularly hazardous substance. In cases where significant quantities of chloroform are in frequent use, the general procedures outlined in Part VI-C should provide adequate protection. The high volatility of chloroform emphasizes the importance of a hood for such operations. Polyvinyl alcohol gloves provide the best hand protection.

- **Diazomethane** (CH₂N₂) and related diazo compounds should be treated with extreme caution. They are very toxic, and the pure gases and liquids explode readily even from contact with sharp edges of glass. Solutions in ether are safer from this standpoint. An ether solution of diazomethane is rendered harmless by dropwise addition of acetic acid.

- **Diethyl and other ethers**, including tetrahydrofuran and 1,4-dioxane and particularly the branched-chain type of ethers, may contain peroxides that have developed from air autoxidation. Concentration of these peroxides during distillation may lead to explosion. Ferrous salts or sodium bisulfite can be used to decompose these peroxides, and passage over basic active alumina can remove most of the peroxicid material. In general, however, dispose of old samples of ethers if they test positive test for peroxide.

- **Diisopropyl ether** is a notoriously dangerous, Class A peroxide former. The peroxide is not completely soluble in the mother liquor. Peroxide concentrations from autoxidation may form saturated solutions that then crystallize the peroxide as it is being formed. There are numerous reports of old bottles of diisopropyl ether being found with large masses of crystals settled at the bottom of the bottle. These crystals are extremely shock sensitive, even while wetted with the diisopropyl ether supernatant. Mild shock (e.g., bottle breakage, removing the bottle cap) is sufficient to result in explosion. This ether should not be stored in the laboratory. Only the amount required for a particular experiment or process should be purchased; any leftover material should be disposed of immediately.

- **Dimethyl and Diethyl Sulfate** (PHS). Many cases of dimethyl sulfate poisoning have been reported. The common initial symptoms are headache and giddiness, with burning of the eyes. The patient’s condition may worsen, with painful eyes, nose and throat irritation, loss of voice, coughing, difficulty in breathing and swallowing, vomiting, and diarrhea possible. The onset of the symptoms may be delayed up to 10 hours. This substance is extremely hazardous because of its lack of warning properties and its delayed toxic effects. Skin contact causes blistering and necrosis, and DMS can be absorbed through the skin in sufficient quantity to cause systemic intoxication. In the worst cases, there is severe inflammation of the mucous membranes and pulmonary injury that may be fatal; several deaths have occured. For example, exposure to 97 ppm for 10 min was fatal. DMS is moderately toxic to animals via the oral route: LD50 (rats) = 440 mg/kg. Undiluted DMS produced moderate to severe irritation when applied to the skin of guinea pigs; 1% DMS produced mild irritation.
DMS does not cause skin sensitization in animals. Undiluted DMS applied to rabbit eyes produced severe injury. Even a 1-hour exposure to 58 ppm has resulted in permanent eye damage in rats. During a 4-hour exposure, 30 ppm DMS killed five out of six rats, but 15 ppm was not lethal. DMS has been shown to be carcinogenic in the rat by inhalation, subcutaneous injection, and following 1 hour per day exposures to 10 ppm DMS for 130 days. The TLV (threshold limit value) for DMS is 0.1 ppm (0.5 mg/m3) as an 8-hour time-weighted average. DMS is classified as being suspected of carcinogenic potential in humans by the ACGIH. The OSHA PEL (permissible exposure limit) for DMS is 1.0 ppm. These limits include a warning of the potential contribution of skin absorption to the overall exposure.

It is particularly important to avoid skin contact by the appropriate use of rubber gloves, a rubber apron, and other protective apparel, and to avoid inhalation of even low concentrations of vapor by working in a hood.

- **Dimethyl sulfoxide** (DMSO), \((\text{CH}_3)_2\text{SO}\), decomposes violently on contact with a wide variety of active halogen compounds, such as acyl chlorides. Explosions from contact with active metal hydrides have been reported. DMSO does penetrate and carry dissolved substances through the skin membrane.

- **Dry benzoyl peroxide** \((\text{C}_6\text{H}_5\text{CO}_2)_2\) is easily ignited and sensitive to shock. It decomposes spontaneously at temperatures greater than 50 °C. It is reported to be desensitized by addition of 20% water.

- **Dry ice** should not be kept in a container that is not designed to withstand pressure. Containers of other substances stored over dry ice for extended periods generally absorb carbon dioxide (CO₂) unless they have been carefully sealed. When such containers are removed from storage and allowed to come rapidly to room temperature, the CO₂ may develop sufficient pressure to burst the container with explosive violence. On removal of such containers from storage, the stopper should be loosened or the container itself should be wrapped in towels and kept behind a shield. Dry ice can produce serious burns, as is also true for all types of dry-ice cooling baths.

- **Dusts** that are suspensions of oxidizable particles (e.g., magnesium powder, zinc dust, carbon powder, and flowers of sulfur) in the air can constitute powerful explosive mixtures. These materials should be used with adequate ventilation and should not be exposed to ignition sources. When finely divided, some solids, including zirconium, titanium, Raney nickel, lead (such as prepared by pyrolysis of lead tartrate), and catalysts (such as activated carbon containing active metals and hydrogen), can combust spontaneously if allowed to dry while exposed to air and should be handled wet.

- **Ethylene Dibromide (1,2-Dibromoethane)** (PHS). Ethylene dibromide (EDB) is classified as a compound with a moderate degree of acute toxicity; the approximate oral lethal dose of EDB for humans is 5-10 mL. Skin absorption of EDB can also cause death, and inhalation of the vapor can produce pulmonary edema. EDB can cause severe irritation to all exposed tissues, respiratory tract, skin, and eye. Systemic effects include central nervous system depression, kidney injury, and severe liver necrosis. Ethylene dibromide is highly toxic to animals via inhalation. The maximum survival exposure of rats to EDB vapors in air are 3000 ppm for 6 min, 400 ppm for 30 min, and 200 ppm for 2 hours. It is moderately toxic via the oral and skin routes: LD₅₀ (rats, oral) = 108 mg/kg; LD₅₀ (rabbits, skin) = 300 mg/kg. EDB is markedly irritating to skin, and a 10% solution has caused serious but reversible corneal injury in rabbit eyes. Rats were repeatedly exposed to 50 ppm EDB for 6 months. Half died from pneumonia and upper respiratory tract infections. Slight changes in the liver and kidney were seen. EDB has induced a high incidence of tumors (squamous-cell carcinomas of the forestomach) in mice and rats following oral administration. The 1979 TLV (threshold limit value) for EDB was 20 ppm (155 mg/m3) as an 8-hour time-weighted average. The exposure limit is 30 ppm over any 15-min period. These limits include a warning about the potential contribution of skin absorption to the
overall exposure. In 1980, the ACGIH put EDB in category A 1b (human carcinogen). For this
category, there is no assigned TLV (threshold limit value), but the ACGIH recommends that those
working with A1b carcinogens should be properly equipped to ensure virtually no contact with the
carcinogens. The OSHA PEL (permissible exposure limit) for EDB is 20 ppm, and the acceptable
maximum peak is 50 ppm for 5 min in any 8-hour time period.

Serious skin injury can occur from direct exposure to EDB. The substance can penetrate
neoprene and several other types of plastic; therefore, gloves and other protective apparel made
of these materials provide only temporary protection if EDB spills on them.

- **Ethylene oxide** (C$_2$H$_4$O) has been known to explode when heated in a closed vessel.
 Experiments using ethylene oxide under pressure should be carried out behind suitable
 barricades.

- **Fluorine** (F$_2$) is an extremely toxic reactive oxidizing gas with extremely low permissible
 exposure levels. Only trained personnel should be authorized to work with fluorine. Anyone
 planning to work with fluorine must fill out a departmental SOP and consult with the safety
 committee.

- **Halogenated compounds**, such as chloroform (CHCl$_3$), carbon tetrachloride (CCl$_4$), and other
 halogenated solvents, should not be dried with sodium, potassium, or other active metals; violent
 explosions usually result. Many halogenated compounds are toxic. Oxidized halogen
 compounds—chlorates, chlorites, bromates, and iodates—and the corresponding peroxy
 compounds may be explosive at high temperatures.

- **Hydrazine** (PHS). Hydrazine is classified as a compound with a high degree of acute toxicity;
 exposure to its vapors can cause respiratory tract irritation, excitement, convulsion, cyanosis, and
decrease in blood pressure. The liquid can severely burn the eyes and skin. Hydrazine can cause
 fatty degeneration of the liver, nephritis, and hemolysis. Hydrazine also poses a dangerous fire
 and explosion risk and can explode during distillation if traces of air are present. Hydrazine is
 moderately toxic to animals via the inhalation, oral, and skin routes: LC$_{50}$ (rats, 4-hour inhalation)
 = 570 ppm; LD$_{50}$ (rats, oral) = 60 mg/kg; LD$_{50}$ (rabbits, skin) = 283 mg/kg (hydrazine hydrate). It
 is a strong skin and mucous membrane irritant and a strong skin sensitizer. Hydrazine hydrate
 produced moderately severe irritation when applied to rabbit eyes. After repeated oral, skin, or
 injection exposure, the effects noted include weight loss, weakness, vomiting, and convulsions.
 The chief histological finding is fatty degeneration of the liver. Among guinea pigs and dogs
 exposed to hydrazine in the air 5-47 times, the dogs showed liver damage, with lesser damage to
 the kidneys and lungs, while the guinea pigs had pneumonitis and partial lung collapse.
 Hydrazine is not regarded as having adequate warning properties.

 Hydrazine and hydrazine salts have been shown to be carcinogenic in mice after oral and
 intraperitoneal administration and in rats following oral dosing. By the oral route, effects were
 found at doses of 24-36 (mg/kg)/day in mice and 20 (mg/kg)/day in rats. No tumors were
 observed in Syrian golden hamsters after oral administration. The ACGIH has classified
 hydrazine as suspected of carcinogenic potential in humans. The TLV (threshold limit value) for
 hydrazine is 0.1 ppm (0.1 mg/m3) and the OSHA PEL (permissible exposure limit) is 1.0 ppm (1
 mg/m3) as 8-hour timeweighted averages. These limits include a warning about the potential
 contribution of skin absorption to the overall exposure. NIOSH has (1978) recommended a ceiling
 limit of 0.03 ppm in any 2-hour period.

 Nitrile rubber is recommended for gloves and other protective apparel. Prompt washing with
 water effectively removes hydrazine from skin that it has splashed on. Hydrazine should not be
 used in the vicinity of a flame or under conditions where sparks can occur, as an explosion or fire
 can result.
Hydrogen fluoride and hydrogen fluoride generators (PHS). Anyone planning to work with fluorine must fill out a departmental SOP and consult with the safety committee.

All forms — dilute or concentrated solutions or the vapor — of hydrofluoric acid (HF) cause severe burns. Inhalation of anhydrous HF or HF mist or vapors can cause severe respiratory tract irritation that may be fatal. Death from pulmonary edema occurred within 2 hours in three of six workers splashed with 70% HF solution despite prompt showering with water. Anhydrous HF is a clear, colorless liquid that boils at 19.5°C. Because of its low boiling point and high vapor pressure, anhydrous HF must be stored in pressure containers. A 70% aqueous solution is a common form of HF. Hydrofluoric acid is miscible with water in all proportions and forms an azeotrope (38.3% HF) that boils at 112°C. Anhydrous or concentrated aqueous HF causes immediate and serious burns to any part of the body. Dilute solutions (<30%) and gaseous HF are also harmful, although several hours may pass before redness or a burning sensation is noticed. These burns may still be quite severe and progressively damaging to the skin and deeper tissues. "Undissociated HF readily penetrates skin and deep tissue where the corrosive fluoride ion can cause necrosis of soft tissues and decalcification of bone; the destruction produced is excruciatingly painful. Fluoride ion also attacks enzymes (e.g., of glycolysis) and cell membranes. The process of tissue destruction and neutralization of the hydrofluoric acid is prolonged for days, unlike other acids that are rapidly neutralized. Because of the insidious manner of penetration, a relatively mild or minor exposure can cause a serious burn" [Proctor, N. H.; Hughes, J. P.; Fischman, M. L. Chemical Hazards of the Workplace, J. B. Lippincott Co., Philadelphia, 1988, p. 279]. Occasionally workers fail to recognize the importance of seeking medical attention for HF burns before pain commences. By the time the victim is affected with progressively deep and more painful throbbing and burning, serious damage may have taken place. Exposures under fingernails can be a particularly painful problem if ignored. Wearing clothing (including leather shoes and gloves) that has absorbed small amounts of HF can result in serious delayed effects such as painful slow-healing skin ulcers.

When handling HF, it is crucial to ensure adequate ventilation by working only in a hood so that safe levels (3 ppm) are not exceeded. All contact of the vapor of the liquid with eyes, skin, respiratory system, or digestive system must be avoided by using protective equipment such as a face shield and neoprene or polyvinyl chloride gloves. The protective equipment should be washed after each use to remove any HF on it. Safety showers and eyewash fountains should be nearby. Anyone working with HF should have received prior instructions about its hazards and in proper protective measures and should know the recommended procedure for treatment in the event of exposure (Reinhardt, C.F. et al.; Am. Ind. Hyg. Assn. J., 1966, 27, 166).

Spills and leaks— The vapors of both anhydrous HF and aqueous 70% HF produce visible fumes if they contact moist air. This characteristic can be useful in detecting leaks but cannot be relied on because of atmospheric variations. Spills of HF must be treated immediately to minimize the dangers of vapor inhalation, body contact, corrosion of equipment, and possible generation of hazardous gases. Spills should be contained and diluted with water. The resulting solution should be neutralized with lime before disposal.

Waste disposal — Waste HF should be slowly added to a larger volume of a stirred solution of slaked lime to precipitate calcium fluoride, which is chemically inert and poses little toxic hazard (sodium fluoride is highly soluble and toxic). Alternatively, hydrofluoric acid can be diluted to about 2% concentration with cold water in a polyethylene vessel, neutralized with aqueous sodium hydroxide, and treated with excess calcium chloride solution to precipitate calcium fluoride.

In the event of exposure — Anyone who knows or even suspects that he or she has come into direct contact with HF should immediately flush the exposed area with large quantities of cool water. Exposed clothing should be removed as quickly as possible while flushing. Medical attention should be obtained promptly, even if the injury appears slight. On the way to the physician, the burned area should be immersed in a mixture of ice and water. If immersion is impractical, a compress made by inserting ice cubes between layers of gauze should be used. Make sure that
the physician understands that the injury was caused by HF and requires treatment very different from other acid burns. Even in the case of very small exposure, washing alone may not be sufficient to completely prevent injury. For minor exposures such as small hole in a glove, application of a calcium gluconate antidote gel can bind free fluoride ion not removed by washing. For regular HF users, this gel may be obtained by contacting the OEHS Office (801-581-6590).

If HF liquid or vapor has contacted the eyes, these organs should be flushed with large quantities of clean water while the eyelids are held apart. This flushing should be continued for 15 minutes. Medical attention should be obtained promptly.

Anyone who has inhaled HF vapor should be removed immediately to an uncontaminated atmosphere and kept warm. Medical help should be obtained promptly. Anyone who has ingested HF should drink a large quantity of water as quickly as possible. Do not induce vomiting. Again, medical help should be obtained promptly. After the acid has been thoroughly diluted with water, if medical attention is delayed, the person should be given milk or two fluid ounces of milk of magnesia to sooth the burning effect.

- **Hydrogen peroxide** \((\text{H}_2\text{O}_2)\) stronger than 3% can be dangerous; in contact with skin, it causes severe burns. Thirty percent \(\text{H}_2\text{O}_2\) may decompose violently if contaminated with iron, copper, chromium, or other metals or their salts. Stirring bars may inadvertently bring metal into a reaction and should be used with caution.

- **Hydrogen Sulfide** \((\text{PHS})\). The acute toxicity of hydrogen sulfide by inhalation is moderate. A five minute exposure to 800 ppm has resulted in death. Inhalation of 1000 to 2000 ppm may cause coma after a single breath. Exposure to lower concentrations may cause headache, dizziness, and nausea. Low concentrations (20-150 ppm) of hydrogen sulfide can cause eye irritation which may be delayed in onset. Although the odor of hydrogen sulfide is detectable at very low concentrations (below 0.1 ppm), it rapidly causes olfactory fatigue at higher levels, and therefore is not considered to have adequate warning properties. Hydrogen sulfide has not been shown to be carcinogenic or to have reproductive or developmental effects in humans. The hydrogen sulfide LC50 for inhalation (rat) is 444 ppm; the PEL (permissible exposure limit) ceiling is 20 ppm, and the TLV-TWA (threshold limit value – timeweighted average) is 10 ppm. Hydrogen sulfide is flammable in air, and the combustion products are also toxic by inhalation. It is incompatible with strong oxidizers, will attack many metals, some plastics and rubbers, and reacts violently with a variety of metal oxides. Laboratory operations with hydrogen sulfide should be carried out in a hood. In particular, cylinders of hydrogen sulfide should be stored and used in a continuously ventilated gas cabinet or fume hood.

- **Mercury**. The element mercury is a liquid metal with a vapor pressure of 0.00185 mm at 25°C. This corresponds to a saturation concentration of 20 milligrams of mercury per cubic meter of air or 2.4 parts per million of air. The American Conference of Governmental Industrial Hygienists has established a threshold limit for mercury vapor of 0.05 milligrams of mercury per cubic meter of air for continuous 40-hour per week exposure. Long term chronic exposure to mercury vapor in excess of 0.05 mg of mercury per cubic meter of air may result in cumulative poisoning. The use of mercury in laboratory amounts in well-ventilated areas is fairly safe; however special precautions must be followed when working with large quantities of mercury.

Mercury poisoning from exposure by chronic inhalation produces a variety of symptoms. The characteristic effects are emotional disturbances, unsteadiness, inflammation of the mouth and gums, general fatigue, memory loss, and headaches. Kidney damage may result from poisoning by mercurical salts. In most cases of exposure by chronic inhalation, the symptoms of poisoning gradually disappear when the source of exposure is removed. However, improvement may be slow and complete recovery may take years. Skin contact with mercury compounds produces
irritation and various degrees of corrosion. Soluble mercury salts can be absorbed through the intact skin and produce poisoning.

Every effort should be made to prevent spills of metallic mercury because the substance is extremely difficult and time consuming to pick up. Droplets get into cracks and crevices, under table legs, and under and into equipment. If spills are frequent and Hg is added to the general air level, the combined concentration may exceed the allowable limits.

Storage — Containers of large quantities of mercury should be kept closed and stored in secondary containers in a well-ventilated area. When breakage of instruments or apparatus containing mercury is a possibility, the equipment should be placed in an enameled or plastic tray or pan that can be cleaned easily and is large enough to contain the mercury in the event of accident. Transfers of Hg from one container to another should be carried out in a hood, over a tray or pan to confine any spills.

Clean Up of spills — Pools of metallic Hg can be collected by suction by using an aspirator bulb or a vacuum device made from a filtering flask, a rubber stopper, and several pieces of flexible rubber and glass tubing. Alternatively, mercury-spill cleanup kits are available from OEHS. When a large spill, pressure system rupture, or heating of mercury is involved, the OEHS Office (801-581-6590) will be glad to survey the area and advise on the degree of hazard which may exist and necessary preventive measures to be undertaken. If Hg has spilled on the floor, the workers involved in cleanup and decontamination activities should wear plastic shoe covers. When the cleanup is complete, the shoe covers should be disposed of and the workers should thoroughly wash their hands, arms, and face several times.

Waste Disposal — Significant quantities of metallic Hg from spills or broken thermometers or other equipment, and contaminated Hg from laboratory activities should be collected in thick-walled high-density polyethylene bottles for reclamation. Rags, sponges, shoe covers, and such used in cleanup activities, and broken thermometers containing small amounts of residual mercury, should be placed in a sealed plastic bag, labeled, and disposed of as hazardous waste.

- **Nickel Carbonyl** (PHS). The use of nickel carbonyl should be avoided if at all possible. *The use of nickel carbonyl requires prior approval from the Chemistry Department Safety Committee.*

- **Nitric acid** is a strong acid, very corrosive, and decomposes to produce nitrogen oxides. The fumes are very irritating, and inhalation may cause pulmonary edema. Nitric acid is also a powerful oxidant and reacts violently, sometimes explosively reducing agents (e.g., organic compounds) with liberation of toxic nitrogen oxides. Contact with organic matter must be avoided. Extreme caution must be taken when cleaning glassware contaminated with organic solvents or material with nitric acid. Toxic fumes of NOx are generated and explosion may occur.

- **N-Nitrosodialkylamines and Certain Other N-Nitroso Compounds** (PHS). N-Nitrosodiethylamine is strongly hepatotoxic and can cause death from liver insufficiency in experimental animals. It is carcinogenic in at least 10 animal species, and is regarded to be a probable human carcinogen. The main targets for its carcinogenic activity are the liver, lung, esophagus, trachea, and nasal cavity. Although data are not available on the toxicity of N-nitrosodiethylamine in humans, the closely related compound N-nitrosodimethylamine has caused extensive liver damage as a consequence of ingestion, inhalation, or topical application to the skin. It is prudent to regard other nitrosamine derivatives as being potential carcinogens.

All work with N-nitrosodialkylamines should be carried out in a well-ventilated hood or in a glove box equipped with a HEPA filter. To the extent possible, all vessels that contain N-nitrosodialkylamines should be kept closed. All work should be carried out in apparatus that is contained in or mounted above unbreakable pans that will contain any spill. All containers should
bear a label such as the following: CANCER-SUSPECT AGENT. All personnel who handle the material should wear plastic, latex, or neoprene gloves and a fully buttoned laboratory coat.

Storage — All bottles of N-nitrosodialkylamines should be stored and transported within an unbreakable outer container; storage should be in a ventilated storage cabinet (or in a hood).

Clean Up of spills and waste disposal — Because N-nitrosodialkylamines are chemically stable under usual conditions, disposal is best carried out by incineration. Contact the Environmental Management Office to arrange for the disposal of waste and contaminated materials. For incineration of liquid wastes, solutions should be neutralized if necessary, filtered to remove solids, and put in closed polyethylene containers for transport. All equipment should be thoroughly rinsed with solvent, which should then be added to the liquid waste for incineration. Great care should be exercised to prevent contamination of the outside of the solvent container. If possible, solid wastes should be incinerated; if this is not possible, solid wastes from reaction mixtures that may contain N-nitrosodialkylamines should be extracted and the extracts added to the liquid waste. Similarly, any rags, paper and such that may be contaminated should be incinerated. Contaminated solid materials should be enclosed in sealed plastic bags that are labeled CANCER-SUSPECT AGENT and with the name and amount of the carcinogen. The bags should be stored in a well-ventilated area until they are incinerated. Spills of N-nitrosodialkylamines can be absorbed by Celite R or a commercial spill absorbent. After the absorbant containing the major share of the nitrosamine has been picked up (avoid dusts; do not sweep), the surface should be thoroughly cleaned with a strong detergent solution. If a major spill occurs outside of a ventilated area, the room should be evacuated, the OEHS Office (801-581-6590) should be contacted, and the cleanup operation should be carried out by persons equipped with self-contained respirators. Those involved in this operation should wear rubber gloves, laboratory coats, and plastic aprons or equivalent protective apparel.

- **Nitrogen Dioxide** (PHS). Nitrogen dioxide (NO2) is classified as a highly acute toxin; it is a primary irritant, acting principally on the lungs and to a lesser extent on the upper respiratory tract. It is certainly one of the most insidious of the gases. The inflammation of the lungs may cause only slight pain, but the edema that results may easily cause death. Toxic effects may develop after a 10 minute exposure to 10 ppm, and one hundred ppm of NO2 in air is a dangerous concentration for even a short exposure. Exposure to 200 ppm for 1-2 min may be fatal.

Nitrogen dioxide gas is reddish brown, has an irritating odor, and must be avoided by the use of an air-purifying respirator equipped with an acid-gas cartridge or canister; at concentrations greater than 50 times the TLV (threshold limit value), a positive-pressure atmosphere-supplying respirator must be used and, in IDLH atmospheres, a pressure-demand self-contained breathing apparatus or a positive-pressure air-line respirator that has escape-cylinder provisions is required.

Nitrogen dioxide is a deadly poison, and no one should work with a cylinder of this substance unless they are fully familiar with its handling and its toxic effect. Ventilation is extremely important, and respiratory protective equipment should always be available. Only stainless steel fittings should be used.

- **Perchlorates** should be avoided whenever possible. Perchlorate salts of organic, organometallic, and inorganic cations are potentially explosive and may detonate by heat or shock. Whenever possible, perchlorate should be replaced with safer anions such as fluoroborate, fluorophosphates, and trifluoromethanesulfonate (triflate).

Perchlorates should not be used as drying agents if there is a possibility of contact with organic compounds or of proximity to a dehydrating acid strong enough to concentrate the perchloric acid.
(HClO₄) (e.g., in a drying train that has a bubble counter containing sulfuric acid). Safer drying agents should be used.

Seventy percent 4 boils safely at approximately 200 °C, but contact of the boiling undiluted acid or the hot vapor with organic matter, or even easily oxidized inorganic matter, leads to serious explosions. Oxidizable substances must never be allowed to contact HClO₄. This includes wooden benchtops or laboratory chemical hood enclosures, which may become highly flammable after absorbing HClO₄ liquid or vapors. Beaker tongs, rather than rubber gloves, should be used when handling fuming HClO₄. Perchloric acid evaporations should be carried out in a chemical hood that has a good draft.

The hood and ventilator ducts should be washed with water frequently (weekly; see PP) to avoid danger of spontaneous combustion or explosion if this acid is in common use.

- **Permanganates** are explosive when treated with sulfuric acid. If both compounds are used in an absorption train, an empty trap should be placed between them and monitored for entrapment.

- **Peroxides** (inorganic) should be handled carefully. When mixed with combustible materials, barium, sodium, and potassium peroxides form explosives that ignite easily.

- **Phenol** is a corrosive and moderately toxic substance that affects the central nervous system and can cause damage to the liver and kidneys. Phenol-formaldehyde reactions are used in creation of phenolic resins, and can be highly exothermic. These reactions have been implicated in a number of plant-scale accidents when runaway reactions caused a sudden rise in pressure and rupturing of pressure disks or vessels. Care should be taken if performing such reactions in the laboratory.

 Phenol is readily absorbed through the skin and can cause severe burns to the skin and eyes. Phenol is irritating to the skin, but has a local anesthetic effect, so that no pain may be felt on initial contact. A whitening of the area of contact generally occurs and severe burns may develop hours after exposure. Exposure to phenol vapor can cause severe irritation of the eyes, nose, throat, and respiratory tract. In the event of skin exposure to phenol, do not immediately rinse the site with water. Instead, treat the site with low-molecular-weight poly(ethylene glycol) (PEG) such as PEG 300 or PEG 400. This will safely deactivate phenol. Irrigate the site with PEG for at least 15 minutes or until there is no detectable odor of phenol.

- **Phosphorus** (P) (red and white) forms explosive mixtures with oxidizing agents. White phosphorus should be stored underwater because it ignites spontaneously in air. The reaction of phosphorus with aqueous hydroxides gives phosphine, which is toxic and also may either ignite spontaneously or explode in air.

- **Piranha solution** is a mixture of concentrated sulfuric acid and 30% hydrogen peroxide. It is a powerful oxidant and strong acid used to remove organic residues from various surfaces. Many instances of explosions have been reported with this solution upon contact with reducing agents, especially organics. The solution slowly evolves oxygen, and therefore containers must be vented at all times.

- **Potassium** (K) is much more reactive than sodium; it ignites quickly on exposure to humid air, and therefore should be handled under the surface of a hydrocarbon solvent such as mineral oil or toluene (see Sodium, below). Potassium can form a crust of the superoxide (KO₂) or the hydrated hydroxide (KOH·H₂O) on contact with air. If this happens, the act of cutting a surface crust off the metal or of melting the encrusted metal can cause a severe explosion due to oxidation of the organic oil or solvent by superoxide, or from reaction of the potassium with water liberated from the hydrated hydroxide.
• **Sodium** (Na) should be stored in a closed container under kerosene, toluene, or mineral oil. Scraps of sodium or potassium should be destroyed by reaction with n-butyl alcohol. Contact with water should be avoided because sodium reacts violently with water to form hydrogen (H₂) with evolution of sufficient heat to cause ignition. Carbon dioxide, bicarbonate, and carbon tetrachloride fire extinguishers should not be used on alkali metal fires. Metals such as sodium become more reactive as the surface area of the particles increases. Prudence dictates using the largest particle size consistent with the task at hand. For example, use of sodium balls or cubes is preferable to use of sodium sand for drying solvents.

• **Sodium amide** (NaNH₂) can undergo oxidation on exposure to air to give sodium nitrite in a mixture that is unstable and may explode.

• **Sodium Cyanide (and other cyanide salts)** (PHS). Inorganic cyanide salts are classified as substances with a high degree of acute toxicity. Sodium cyanide is among the fastest acting of all known poisons. The lethal oral dose for humans is 200 mg. The symptoms of cyanide overdose include weakness, headache, confusion, and, occasionally, nausea and vomiting. Higher doses may be followed by almost instantaneous death. Solutions are irritating to the skin, nose, and eyes, and cyanide is absorbed through the skin. Sodium cyanide is highly toxic to animals via the oral route: LD50 (rats) = 6.4 mg/kg. It can be corrosive to the skin and the eyes, for it is highly alkaline. Sodium cyanide can also produce toxic symptoms via skin absorption and inhalation. The TLV (threshold limit value) and the OSHA PEL (permissible exposure limit) for cyanide are both 5 mg/m³ as an 8-hour time-weighted average. These limits include a warning of the potential contribution of skin absorption to the overall exposure. In 1976, NIOSH recommended that the 5-mg/m³ limit be retained but that its basis be changed from an 8-hour TWA to a 10-min ceiling.

Proper gloves should be worn when handling dry sodium cyanide. Rubber gloves and splash proof goggles should be worn when substantial amounts of sodium cyanide solution are used. Hydrolysis of sodium cyanide (and other cyanide salts) by water or acid generates HCN which is extremely hazardous. All reaction equipment in which cyanides are used or produced should be placed in or over shallow pans so that spills or leaks will be contained. In the event of spills of HCN or cyanide solutions, the contaminated area should be evacuated promptly and it should be determined immediately whether anyone had been exposed to cyanide vapors or liquid splash. Consideration should be given to the need for evacuating other parts of the building or notifying other occupants that the spill has occurred. In general, it is usually best not to attempt to dilute or absorb such spills if they occur in well-ventilated areas.

Detection – Hydrogen cyanide has a characteristic odor that resembles that of bitter almonds, however, many people cannot smell it in low concentrations, and this method of detection should not be relied on. Vapor-detector tubes sensitive to 1 ppm of HCN are available commercially. The presence of free cyanide ion in aqueous solution may be detected by treating an aliquot of the sample with ferrous sulfate and an excess of sulfuric acid. A precipitate of Prussian blue indicates that free cyanide ion is present.

Storage – Sodium cyanide and acids should not be stored or transported together. An open bottle of NaCN can generate HCN in humid air, and HCN may be liberated from spills of sodium cyanide solutions.

Waste disposal – Waste solutions containing cyanides should be sealed in clearly marked bottles. Contact the Environmental Management Office to arrange disposal of these containers.

In the event of exposure – Anyone who has been exposed to HCN should be removed from the contaminated atmosphere immediately. Any contaminated clothing should be removed and the affected area deluged with water. Emergency medical attention should be obtained immediately.
• **Sulfuric acid** \((\text{H}_2\text{SO}_4)\) should be avoided, if possible, as a drying agent in desiccators. If it must be used, glass beads should be placed in it to help prevent splashing when the desiccator is moved. To dilute \(\text{H}_2\text{SO}_4\), the acid should be added slowly to cold water. Addition of water to the denser \(\text{H}_2\text{SO}_4\) can cause localized surface boiling and spattering on the operator.
Appendix A: Glove Compatibility Guide

CHEMICAL RESISTANCE GUIDE

This Chemical Resistance Guide incorporates three types of information:

- Degradation (D) is a destructive change in one or more of the glove’s physical properties. The most obvious forms of degradation are the loss of the glove’s strength and extensibility involving several parallel degradation steps (primarily the General Chemical Resistance to Industrial Environment) by the Los Angeles Rubber Group, Inc. used to determine degradation.

- Permeation rate (PR), measured in milligrams per square meter per minute (mg/min/air) is the measured steady state flow of the permeating chemical through the glove. gloves blocks an important role in resistance to permeation.

- Permeation rate (PR), measured in milligrams per square meter per minute (mg/min/air) is the measured steady state flow of the permeating chemical through the glove. gloves blocks an important role in resistance to permeation.

The gloves tested for permeation were the 550, 931, 134, 145, 155, and 160. The permeation data for these tests are based on permeation tests performed in accordance with ASTM Standard F 739 under laboratory conditions by North Safety-Products or independent industrial laboratories. Neither North Safety-Products nor the independent laboratory assumes any responsibility for the suitability of an end-user’s selection of gloves based on this guide.

General Recommendation:
The Guide also provides a color-coded general recommendation on which gloves should be evaluated and tested first, based on data from multiple sources. (See general recommendation color key).

Technical Assistance:
Data on chemicals listed here can be obtained by calling the North Technical Services Department at (800) 483-4110. North also offers "eGuide", an interactive software program which is designed to electronically help you select the proper glove for use against specific chemicals. This "use friendly" guide walks you step-by-step through the process to determine what type of glove is worn and its performance resistance to the selected contaminant. Product features, benefits and relating information of the suggested products are also included in the program. "eGuide" can be accessed from the North web site, www.northsafe.com or ordered by e-mailing us at marketing@northsafe.com.

The first chemical handling gloves deserve to be used with the fixed respiratory products. Please consult the current North Safety Products Respiratory Protection Catalog 1997 for proper respiratory selection.

Warnings:
Protective gloves and other protective apparel selection must be based on the user’s assessment of the workplace hazards. gloves and apparel materials do not provide unlimited protection against chemicals. It is the user’s responsibility to determine suitable that the Glove and Apparel will resist permeation and degradation by the chemicals (including chemical mixtures) in the environment of intended use.

Orders by the user to select the correct protective gloves can result in injury, sickness or death.

To obtain maximum life, protective gloves and other protective apparel should have chemicals removed from the surface by washing or other appropriate methods after each use. Protective apparel should be stored away from the contaminating atmosphere. Interchange, torn or otherwise damaged apparel must be removed from service, serviceable apparel may be disposed of only in accordance with applicable waste disposal regulations.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS No.</th>
<th>Silver Shield</th>
<th>Viton</th>
<th>Butyl</th>
<th>Chemsol®</th>
<th>Nitrile</th>
<th>Natural Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Ethyl Alcohol</td>
<td>64-17-5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>D-Ethyl Acetate</td>
<td>141-82-6</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>D-Ethyl Acetate</td>
<td>141-83-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>D-Ethyl Alcohol</td>
<td>64-17-5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Diacetone Alcohol</td>
<td>75-05-8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Diethanolamine</td>
<td>111-42-0</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>111-46-0</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dimethyl Formamide</td>
<td>110-22-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dimethyl Sulfone</td>
<td>528-74-9</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dimethylacrylic Amide</td>
<td>153-60-1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>111-46-0</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Diethanolamine</td>
<td>111-42-0</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dioxane</td>
<td>109-00-0</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dicyandiamide</td>
<td>411-97-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dicyclonexylene</td>
<td>75-06-1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>117-81-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Sulfide</td>
<td>110-92-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>117-81-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>117-81-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>117-81-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>117-81-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>117-81-7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CAS No.</td>
<td>D</td>
<td>BT</td>
<td>PR</td>
<td>D</td>
<td>BT</td>
<td>PR</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Butyl Alcohol</td>
<td>78-92-5</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>Isopropyl Alcohol</td>
<td>67-63-0</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>Ethyl Alcohol</td>
<td>64-17-5</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Butyl Alcohol</td>
<td>71-36-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>100-42-8</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>Ethylene Glycol Ether</td>
<td>107-21-1</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Octane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Nonane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Decane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Tridecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Pentadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Heptadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Octadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Nonadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Decadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Hendecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Undecadecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>110-54-3</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
<td>E</td>
<td>>5 hrs</td>
<td>N/D</td>
</tr>
</tbody>
</table>

-31-
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS No.</th>
<th>Silver Shield</th>
<th>Witon</th>
<th>Butyl</th>
<th>Chomsoft</th>
<th>Nitrio</th>
<th>Natural Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>110-88-4</td>
<td>V</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Acetic Acid (1% solution)</td>
<td>64-19-7</td>
<td>E</td>
<td>15</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Isobutylacetate</td>
<td>102-68-3</td>
<td>V</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Hexane</td>
<td>110-54-3</td>
<td>E</td>
<td>17</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Benzene</td>
<td>100-42-8</td>
<td>E</td>
<td>17</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Methanol</td>
<td>67-56-1</td>
<td>E</td>
<td>18</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>E</td>
<td>15</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>E</td>
<td>17</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Acetic Acid (20%)</td>
<td>106-22-0</td>
<td>E</td>
<td>18</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>Salicylic Acid (20%)</td>
<td>127-14-8</td>
<td>V</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>酚醛树脂</td>
<td>100-42-8</td>
<td>E</td>
<td>15</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>聚酰胺</td>
<td>127-14-8</td>
<td>V</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>聚酰胺</td>
<td>127-14-8</td>
<td>V</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
<tr>
<td>聚酰胺</td>
<td>127-14-8</td>
<td>V</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>V</td>
<td>U</td>
</tr>
</tbody>
</table>

Legend:
- **D:** Degradation
- **F:** Excellent
- **N/D:** None Detected
- **U:** Inefficient Data
- **PR:** Permeation Rate
- **P:** Poor

For total immersion:
- Green = Good for total immersion
- Yellow = Good for accidental splash protection and intermittent contact
- Red = Only use with extreme caution. Gloves will tear with short exposure
Viton® - Unsupported Gloves
Excellent chemical resistance to chlorinated and aromatic solvents. Can be used in water-based solvents without dissolving. Superior resistance to oils. Curved finger and hand design provides better fit for greater worker comfort.

Viton® is a registered trademark of the DuPont company.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Size</th>
<th>Type</th>
<th>Length</th>
<th>Inner Pack</th>
<th>Case Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>7131</td>
<td>Black, nitrile</td>
<td>8-11</td>
<td>Smooth/straight</td>
<td>11 1/2 in</td>
<td>1 pair</td>
<td>10 pair</td>
</tr>
<tr>
<td>5134</td>
<td>Black, nitrile</td>
<td>8-11</td>
<td>Smooth/straight</td>
<td>11 1/2 in</td>
<td>1 pair</td>
<td>10 pair</td>
</tr>
</tbody>
</table>

Silver Shield®/4It® Gloves
Resistant to over 500 different chemicals: acids, alkalies, aromatics, chlorines, ketones, ethers. Low cost, disposable gloves do not have to be recycled and are readily available to workers. Does not contain chemical accelerators that can cause allergic reactions. Can be used as a secondary inner glove. Allows worker maximum protection in heavy-duty jobs where the dangers of mechanical damage to gloved skin are high.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Size</th>
<th>Type</th>
<th>Length</th>
<th>Inner Pack</th>
<th>Case Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS</td>
<td>Silver, unlined</td>
<td>6, 7, 8</td>
<td>Smooth/straight</td>
<td>4 1/2" x 2 1/2"</td>
<td>10 pair</td>
<td>10 pair</td>
</tr>
<tr>
<td>SSS25100</td>
<td>Silver, unlined</td>
<td>10</td>
<td>Smooth/straight</td>
<td>4 1/2" x 2 1/2"</td>
<td>10 pair</td>
<td>10 pair</td>
</tr>
</tbody>
</table>

Chemsoft® Industrial Glove
Unique patented 100% nitrile formulation is thicker than the leading industrial weight nitrile gloves. Generally designed to pick up small parts, better than comparable nitrile gloves on the market, without hand fatigue. Comply with USDA and FDA regulations, 21 CFR, for use in food processing. Form of nitrile that can cause allergic reactions.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Size</th>
<th>Type</th>
<th>Length</th>
<th>Inner Pack</th>
<th>Case Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3138</td>
<td>Blue, nitrile</td>
<td>7-11</td>
<td>Smooth/straight</td>
<td>13 3/4 in</td>
<td>1 pair</td>
<td>12 pair</td>
</tr>
<tr>
<td>C6138</td>
<td>Black, nitrile</td>
<td>7-11</td>
<td>Smooth/straight</td>
<td>13 3/4 in</td>
<td>1 pair</td>
<td>12 pair</td>
</tr>
</tbody>
</table>

Unsupported Premium Natural Rubber
100% high natural rubber has maximum cut resistance, elasticity, and tennic resistance to wear and tear. Unique nitrile edge provides extra protection from tearing. Eliminates need for more complex and costly design. Complies with USDA and FDA regulations, 21 CFR, for use in food processing.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Size</th>
<th>Type</th>
<th>Length</th>
<th>Inner Pack</th>
<th>Case Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED00143</td>
<td>Orange, nitrile</td>
<td>7-11</td>
<td>Smooth/wristband</td>
<td>13 3/4 in</td>
<td>1 pair</td>
<td>12 pair</td>
</tr>
</tbody>
</table>
PLEASE CONTACT US FOR ALL OF THE GREAT PRODUCTS BY NORTH

www.northsafety.com

USA
1-800-690-4910
Cranston
200 Blankfield Ave, Cranston, RI 02921
Tel: (401)423-4400/Fax (401)275-3619
Tel: TOLL free: 1-800-572-6346

CANADA

Eastern & Atlantic Canada
1-888-212-SAFE(7233)
Montreal
15500 Parkway Blvd.
Anjou, Laval
Tel: (514)351-SAFE(7233)
Fax (514)774-8698

Central Canada
1-888-316-SAFE(7233)
Toronto
Toll free fax: 1-888-967-8477
Sales Support
X2 Donnax Conn
Toronto, Ontario, N9W 5K8
Tel: (416)472-2819/Fax: (416)963-6488
Toll free phone: 1-888-272-2712
Tel: Fax free: 1-877-340-9415

Western Canada
1-800-661-9638
Edmonton
6923 54 Ave.
Edmonton, Alberta
T6E 1G6

EUROPE

The Netherlands
+31(0)118-66680
1-866-323-1691

INTERNATIONAL
Latin America
Australia/New Zealand/Asia
61.3.8337.0111

Head Protection
Eye & Face Protection
Hearing Protection
Respiratory Protection
Fall Protection
First Aid Products
Disaster Preparedness
Hand Protection
Controlled Environment Products
Protective Clothing
Protective Footwear
Traffic Safety Products
Signs & Lockouts
Electrical Safety Products
Consumer Products

Distributed by:

Printed in USA

-34-
Appendix D: Qualitative Test for Fume hood Performance

Taken from PP.

BOX 6.1
A Simple Qualitative Method to Verify Adequate Laboratory Chemical Hood Ventilation

Materials
200 g (approximately 250 mL) of dry ice pellets (5- to 10-mm diam)
Shallow bowl, approximately 3-L volume
1 L water at 43 °C (mix hot and cold water as needed to obtain the target temperature)
Thermometer

Procedure
1. Open the chemical fume hood sash to simulate actual operation. Position laboratory equipment as close as possible to where it will be used.
2. Place the shallow bowl approximately 15 cm into the chemical fume hood and in the center of the sash opening.
3. Add 1 L of the warm water to the bowl.
4. Add the dry ice pellets to the water.
5. After approximately 5 s, observe the vapor flowing from the bowl.
6. Repeat the observation while a colleague walks past or moves around the chemical fume hood to simulate actual operation.
7. If vapors are observed escaping the chemical fume hood face, the result is a fail; none escaping is a pass.

In the event of a failure or if there is any concern about proper operation, contact appropriate personnel and take corrective action. Adjustment of the sash opening and the baffles and relocation of equipment in the chemical fume hood should be considered.

NOTE: In addition, airflow should be measured on an annual basis.
Appendix E: Table of Fire Hazard Ratings from Prudent Practices

TABLE 4.4

<table>
<thead>
<tr>
<th>Chemical</th>
<th>NFPA Flammability Rating</th>
<th>Flash Point (°C)</th>
<th>Boiling Point (°C)</th>
<th>Ignition Temperature (°C)</th>
<th>Flammable Limits (% by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>4</td>
<td>-39</td>
<td>21</td>
<td>175</td>
<td>4</td>
</tr>
<tr>
<td>Acetic acid (glacial)</td>
<td>2</td>
<td>39</td>
<td>118</td>
<td>463</td>
<td>4</td>
</tr>
<tr>
<td>Acetone</td>
<td>3</td>
<td>-20</td>
<td>56</td>
<td>465</td>
<td>2.5</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>3</td>
<td>6</td>
<td>82</td>
<td>524</td>
<td>3</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>4</td>
<td>-30</td>
<td>46</td>
<td>90</td>
<td>1.3</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>3</td>
<td>-20</td>
<td>82</td>
<td>245</td>
<td>1.3</td>
</tr>
<tr>
<td>Diethylamine</td>
<td>3</td>
<td>-23</td>
<td>57</td>
<td>312</td>
<td>1.8</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>4</td>
<td>-45</td>
<td>35</td>
<td>180</td>
<td>1.9</td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td>2</td>
<td>95</td>
<td>189</td>
<td>215</td>
<td>2.6</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>3</td>
<td>13</td>
<td>78</td>
<td>363</td>
<td>3.3</td>
</tr>
<tr>
<td>Heptane</td>
<td>3</td>
<td>-4</td>
<td>98</td>
<td>204</td>
<td>1.05</td>
</tr>
<tr>
<td>Hexane</td>
<td>3</td>
<td>-22</td>
<td>69</td>
<td>225</td>
<td>1.1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4</td>
<td>-252</td>
<td>500</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>3</td>
<td>12</td>
<td>83</td>
<td>399</td>
<td>2</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>3</td>
<td>11</td>
<td>64</td>
<td>464</td>
<td>6</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>3</td>
<td>-9</td>
<td>80</td>
<td>404</td>
<td>1.4 @ 200 (93)</td>
</tr>
<tr>
<td>Pentane</td>
<td>4</td>
<td><-40</td>
<td>36</td>
<td>260</td>
<td>1.5</td>
</tr>
<tr>
<td>Styrene</td>
<td>3</td>
<td>31</td>
<td>146</td>
<td>490</td>
<td>0.9</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>3</td>
<td>-14</td>
<td>66</td>
<td>321</td>
<td>2</td>
</tr>
<tr>
<td>Toluene</td>
<td>3</td>
<td>4</td>
<td>111</td>
<td>480</td>
<td>1.1</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>3</td>
<td>25</td>
<td>138</td>
<td>528</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Note: 0, will not burn under typical fire conditions; 1, must be preheated to burn; liquids with FP ≥ 93.4 °C (200 °F); 2, ignitable when moderately heated, liquids with FP between 37.8 °C (100 °F) and 93.4 °C (200 °F); 3, ignitable at ambient temperature, liquids with FP < 22.8 °C (73 °F), bp ≥ 37.8 °C (100 °F) or FP between 22.8 °C and 37.8 °C (100 °F); 4, extremely flammable, readily dispersed in air, and burns readily, liquids with FP < 22.8 °C (73 °F), bp < 37.8 °C (100 °F).

Appendix F: Partial List of Chemical Incompatibility

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>INCOMPATIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, permanganates</td>
</tr>
<tr>
<td>Acetone</td>
<td>Concentrated nitric and sulfuric acid mixtures</td>
</tr>
<tr>
<td>Acetylene</td>
<td>Chlorine, bromine, copper, fluorine, silver, mercury</td>
</tr>
<tr>
<td>Alkali and alkaline earth metals (lithium, sodium, potassium)</td>
<td>Water, carbon tetrachloride or other chlorinated hydrocarbons, carbon dioxide, halogens, powdered metals (e.g., aluminum or magnesium)</td>
</tr>
<tr>
<td>Ammonia (anhydrous)</td>
<td>Mercury (e.g., in manometers), chlorine, calcium hypochlorite, iodine, bromine, hydrofluoric acid (anhydrous)</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>Acids, powdered metals, flammable liquids, chlorates, nitrates, sulfur, finely divided organic or combustible materials</td>
</tr>
<tr>
<td>Aniline</td>
<td>Nitric acid, hydrogen peroxide</td>
</tr>
<tr>
<td>Arsenical materials</td>
<td>Any reducing agent</td>
</tr>
<tr>
<td>Azides</td>
<td>Acids</td>
</tr>
<tr>
<td>Bromine</td>
<td>See Chlorine</td>
</tr>
<tr>
<td>Calcium oxide</td>
<td>Water</td>
</tr>
<tr>
<td>Carbon (activated)</td>
<td>Calcium hypochlorite, all oxidizing agents</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>Sodium, Chlorates, Ammonium salts, acids, powdered metals, finely divided organic or combustible materials</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Ammonia, acetylene, butadiene, butane, methane, propane (or other petroleum gases), hydrogen, sodium carbide, benzene, finely divided metals, turpentine</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>Ammonia, methane, phosphine, hydrogen sulfide</td>
</tr>
<tr>
<td>Chromic acid and chromium</td>
<td>Acetic acid, naphthalene, camphor, glycerol, alcohol, flammable liquids in general</td>
</tr>
<tr>
<td>Copper</td>
<td>Acetylene, hydrogen peroxide</td>
</tr>
<tr>
<td>Cumene hydroperoxide</td>
<td>Acids (organic or inorganic)</td>
</tr>
<tr>
<td>Cyanides</td>
<td>Acids</td>
</tr>
<tr>
<td>Flammable liquids</td>
<td>Ammonium nitrate, chromatic acid, hydrogen peroxide, nitric acid, sodium peroxide, halogens</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Isolate from everything</td>
</tr>
<tr>
<td>Hydrocarbons (e.g., butane, propane, benzene)</td>
<td>Fluorine, chlorine, bromine, chromic acid, sodium peroxide</td>
</tr>
<tr>
<td>Hydrocyanic acid</td>
<td>Nitric acid, alkali</td>
</tr>
<tr>
<td>Hydrofluoric acid (anhydrous)</td>
<td>Ammonia (aqueous or anhydrous)</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Copper, chromium, iron, most metals or their salts, alcohols, acetone, organic materials, aniline, nitromethane, combustible materials</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>Fuming nitric acid, oxidizing gases</td>
</tr>
<tr>
<td>Hypochlorites</td>
<td>Acids, activated carbon</td>
</tr>
<tr>
<td>Iodine</td>
<td>Acetylene, ammonia (aqueous or anhydrous), hydrogen</td>
</tr>
<tr>
<td>Mercury</td>
<td>Acetylene, fulminic acid, ammonia</td>
</tr>
<tr>
<td>Nitrates</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>Nitric acid (concentrated)</td>
<td>Acetic acid, aniline, chromic acid, hydrocyanic acid, hydrogen sulfide, flammable liquids, flammable gases, copper, brass, any heavy metals</td>
</tr>
<tr>
<td>Nitrites</td>
<td>Potassium or sodium cyanide</td>
</tr>
<tr>
<td>Nitroparaffins</td>
<td>Inorganic bases, amines</td>
</tr>
<tr>
<td>Substance</td>
<td>Reactants</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>Silver, mercury</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Oils, grease, hydrogen, flammable: liquids, solids, or gases</td>
</tr>
<tr>
<td>Perchloric acid</td>
<td>Acetic anhydride, bismuth and its alloys, alcohol, paper, wood, grease, oils</td>
</tr>
<tr>
<td>Peroxides, Organic</td>
<td>Acids (organic or mineral), avoid friction, store cold</td>
</tr>
<tr>
<td>Phosphorus (white)</td>
<td>Air, oxygen, alkalis, reducing agents</td>
</tr>
<tr>
<td>Phosphorus pentoxide</td>
<td>Water</td>
</tr>
<tr>
<td>Potassium</td>
<td>Carbon tetrachloride, carbon dioxide, water</td>
</tr>
<tr>
<td>Potassium chlorate</td>
<td>Sulfuric and other acids</td>
</tr>
<tr>
<td>Potassium perchlorate</td>
<td>(see Sulfuric and other acids also chlorates)</td>
</tr>
<tr>
<td>Potassium permanganate</td>
<td>Glycerol, ethylene glycol, benzaldehyde, sulfuric acid</td>
</tr>
<tr>
<td>Selenides</td>
<td>Reducing agents</td>
</tr>
<tr>
<td>Silver</td>
<td>Acetylene, oxalic acid, tartaric acid, ammonium compounds, fulminic acid</td>
</tr>
<tr>
<td>Sodium</td>
<td>Carbon tetrachloride, carbon dioxide, water</td>
</tr>
<tr>
<td>Sodium Chlorate</td>
<td>Acids, ammonium salts, oxidizable materials, sulfur</td>
</tr>
<tr>
<td>Sodium nitrite</td>
<td>Ammonium nitrate and other ammonium salts</td>
</tr>
<tr>
<td>Sodium peroxide</td>
<td>Ethyl or methyl alcohol, glacial acetic acid, acetic anhydride, benzaldehyde, carbon disulfide, glycerin, ethylene glycol, ethyl acetate, methyl acetate, furfural</td>
</tr>
<tr>
<td>Sulfides</td>
<td>Acids</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Potassium chlorate, potassium perchlorate, potassium permanganate</td>
</tr>
<tr>
<td></td>
<td>(similar compounds of light metals, such as sodium, lithium)</td>
</tr>
<tr>
<td>Tellurides</td>
<td>Reducing agents</td>
</tr>
<tr>
<td>Water</td>
<td>Acetyl chloride, alkaline and alkaline earth metals, their hydrides and oxides, barium peroxide, carbides, chromic acid, phosphorous oxychloride, phosphorous pentachloride, phosphorous pentoxide, sulfuric acid, sulfur trioxide</td>
</tr>
</tbody>
</table>
Appendix G: CGA numbers for common lab gases and gas mixtures.

If a gas is not listed, you can find the CGA number online and/or from the chemical vendor.
Appendix H: Working with Chemicals While Pregnant

The following guidelines are provided for women who work in a laboratory environment and are pregnant, nursing, or are trying to become pregnant. It should be noted that the U.S. Supreme Court has determined that a pregnant employee has the right to determine whether or not she continues in her present work environment while pregnant regardless of the hazards that may be present.

1. Creating and following proper laboratory, chemical hygiene, and biological safety procedures is critical in any lab environment. A robust chemical hygiene plan or biosafety plan and standard operating procedures provide the first line of defense for any lab employee.

2. The pregnant employee should start by listing all the hazards to which they might be exposed in the course of their own or a co-worker’s work. Don't limit the list to chemical hazards only; many other hazards exist in the lab environment, such as radiation, biological materials, lifting of heavy objects, heat, fatigue, stress, etc.

3. Research the various materials used in the lab. Safety Data Sheets (SDS) are a good place to start your research but do not limit your research to one source. Additional, and often better, information on specific hazards can be found in a chemical dictionary, Prudent Practices in the Laboratory, the Centers for Disease Control website and others.

4. Discuss your list with your doctor or healthcare provider. In some cases it may be prudent to also discuss your concerns with an Occupational Medicine doctor – they have additional expertise in toxicology and other areas directly related to the work environment.

5. Discuss your list of concerns with your supervisor or Principal Investigator.

6. Discuss any recommendations made by your doctor with your supervisor.

7. Although it is not required, it is recommended that the supervisor attempt to accommodate the employee as much as possible. Labs have often made provisions where a person would temporarily have someone else carry out work with a particular agent or chemical. Ultimately it is the responsibility of the employee to determine whether or not they are willing to accept the risks associated with hazards in the laboratory.

8. Consult with Occupational and Environmental Health & Safety (OEHS) at 801-581-6590 to make sure that any steps taken to minimize the hazards are appropriate or if you have any questions.