As a matter of force –
Systematic biases in idealized turbulence simulations

Philipp Grete
Michigan State University

in collaboration with
Brian O’Shea, and Kris Beckwith

SnowCluster 2018
Snowbird, Utah, Mar 18, 2018
Motivation

- Large dynamical range in clusters
- Captured only to a certain degree in simulations → idealized subvolumes
- Example: Turbulence in a box
- Assumption: Realization of driving does not matter
 → unfortunately not quite true

[Image credit top: Walker+ MNRAS 2017]
Driven turbulence in a box

- Isothermal, isotropic, homogeneous MHD turbulence
- Subsonic $M_s \approx 0.5$ and super-Alfvénic
- Analyzed stationary regime (50 snapshots over 2.5 turnover times T)

- Solenoidal driving with varying
 - Autocorrelation time: δ in time \leftrightarrow finite corr. time
 - Normalization: Constant energy injection rate $\dot{E} \leftrightarrow$ constant RMS acceleration $\langle a \rangle$
Kinetic energy spectra

- Shorter autocorrelation time T_{corr}
 \rightarrow more power in compressive modes

- Dynamically relevant (different slope in total energy) for F_δ^E
 \Rightarrow Don’t end up with/on the wrong slope
Energy input and alignment

- Energy input: $\dot{E} = \rho u \cdot a$

- To reach same M_s: shorter autocorrelation time T_{corr} requires more power in the acceleration field

- (Limited) dynamic alignment with increasing T_{corr}

\Rightarrow more efficient energy input
Faraday rotation measures are exact only if ρ and B are uncorrelated [Beck+ 2003 A&A]

Competing effects

- Negative correlation from total pressure equil.
 \[\rho_{\text{tot}} = \rho_{\text{th}} + \rho_{\text{mag}} \approx \text{const.} \]
 [see also Yoon+ 2016 ApJ]
- Positive correlation from frozen in flux compression
Density distributions

- δ in time simulation: broad and symmetric
- Finite corr. forcing: peaked and skewed

\Rightarrow Direct result of compressive modes
Results

Magnetic field measurements

- δ in time forcing: peaked and centered (on true B value)
- Finite corr. forcing: broad and offset (from true B value)

(Natural) underestimation of magnetic field strength
Forcing parameters directly influence physics on all scales

- Shorter forcing autocorrelation times require
 - more power in the acceleration field that seeds
 - more power in compressive modes, which modify
 - \((\rho - B)\) correlations and distributions

\(\delta\) in time forcing is unrealistic and numerically not resolved

\(\Rightarrow\) Results from simulations using \(\delta\) in time forcing should be interpreted with care