Properties of SZ-selected vs X-ray selected galaxy clusters: evidence for selection biases.

Mariachiara Rossetti
(IASF-MI INAF)

In collaboration with:
M. Della Torre, G. Pantiri, G. Ferioli, P. Cazzoletti, M. Bertuletti (UniMI)
F. Gastaldello, D. Eckert, S. Molendi
“The majority of newly discovered Planck clusters show evidence for significant morphological disturbances”

(Planck Collaboration 2011, Planck Early results IX)

To confirm, complete samples are needed

Do we expect SZ-selected systems to be more dynamically disturbed than X-rays?

* Is the Planck selection biased towards disturbed objects?

Test with simulations:
Injection of SZ maps of disturbed/relaxed clusters in simulated sky.

No significant differences in the selection function.

(Planck 2015 Results, XXVII)
Selection biases in X-rays?

At a given mass, relaxed cool core clusters are overall more luminous than NCC (30% scatter in L-M scaling relations)

Excess of CC due to **Malmquist bias** (in flux limited X-ray surveys) and **Eddington bias** (in X-ray surveys with a luminosity cut)
Selection biases in X-rays?

Even if CC had the same total luminosity than NCC, they would still be more easily detected in a survey.

SHAPE MATTERS!
Cool core bias

Simulations of CC bias from Eckert et al 2011

The effect is stronger close to the detection limit of the survey

It affects X-rays surveys ($L_x \approx n_e^2$, Pesce et al 1990, Eckert et al 2011) and is predicted to be small in SZ-surveys ($I_{SZ} \approx n_e$, Lin et al 2015, Pipino & Pierpaoli 2010), especially with Planck
Testing selection biases

Comparing the properties of samples derived with different techniques allows to test for selection biases with real data.

Compare samples with similar M and z distribution

<table>
<thead>
<tr>
<th>Merger state</th>
<th>CC state</th>
</tr>
</thead>
<tbody>
<tr>
<td>With dynamical or morphological indicators</td>
<td>With indicators of “coolcoreness”</td>
</tr>
</tbody>
</table>
The dynamical state of Planck clusters

Offset between X-ray peak and BCG* position as a dynamical indicator

(Hudson et al 2010, Sanderson et al 2009, Mann & Ebeling 12)

*BCG= Brightest Cluster Galaxy

The dynamical state of Planck clusters

Measured on almost complete sample (128/132) of Planck high S/N clusters with public X-ray (Chandra or XMM) observations and BCG identification (literature + archival analysis)

Literature information on the BCG – Xray peak offset available for many samples, often with heterogeneous selection. We compared only with purely X-ray selected samples.

ME-MACS (*Mann & Ebeling 2012*): 108, most massive high-z (>0.15) objects in RASS data

HIFLUGCS (*Zhang+ 2011*): 62, Brightest X-ray clusters, local, low mass objects

REXCESS (*Haarsma+2010*): 30, intermediate mass and z
SZ vs X-ray samples

Relaxed $D_{X-BCG}=0.02R_{500}$ Disturbed

Sanderson+ 09

Frequency

D_{X-BCG} (R$_{500}$)

SZ vs X-ray samples

Kolmogorov-Smirnov test
KS Statistic = 0.228
Null hypothesis probability = 0.4%

Relaxed fraction
Planck: 52±4%
ME-MACS: 73±4%

Fewer relaxed objects in Planck than in ME-MACS
The CC state of Planck clusters

$D_{\text{X-BCG}}$ is not a direct indicator of the presence of a prominent density peak

Redo the analysis with the concentration parameter (Santos et al 2008)

\[
c = \frac{I(R < 40 \text{ kpc})}{I(R < 400 \text{ kpc})}
\]

Abell 2204: CC

- $C=0.30$

Abell 2069: NCC

- $C=0.02$

MR et al (2017), MNRAS 468, 1917
The CC state of Planck clusters

D_{X-BCG} is not a direct indicator of the presence of a prominent density peak

Redo the analysis with the concentration parameter (Santos et al 2008)

\[
c = \frac{I(R < 40 \text{ kpc})}{I(R < 400 \text{ kpc})}
\]

Sample:

* Almost complete sample (169/189) based on the PSZ1 cosmo catalogue (high S/N objects)

* Comparison with 104 ME-MACS clusters (overlap in mass and z), same analysis

The CC state of Planck clusters

![Graph showing the CC state of Planck clusters]

The CC state of Planck clusters

CC fraction

Planck: 29 ± 4%
ME-MACS: 59 ± 5%

KS test: KS statistic $D = 0.35$, Null hyp. Prob. $p_0 = 1.7 \times 10^{-5}$
Even more significant difference between Planck and ME-MACS
Simulating the CC bias

Simulations updated from Eckert et al (2011) to reproduce CC-bias in a ME-MACS-like survey starting from a Planck-like sample

IDEA:
Assume that the population of clusters in the Universe follows the Planck c distribution.

Simulate the X-ray and SZ selection
Simulating the CC bias

Input CC frac: 29%
Output CC frac: 48%
Observed CC frac: 59%

Secondary CC peak in simulated distribution

The CC-bias plays a large role
Consistent results (I)

Andrade-Santos et al (2017)

Planck (ESZ): early catalogue, 164 obj. \(z<0.35\)

VS

X-ray: extended from Voevodkin & Vikhlinin (2004), 129 obj with \(f_x>7.5 \times 10^{-12}\) ergs cm\(^{-2}\) s\(^{-1}\) in RASS, mostly \(z<0.2\)

CC fraction:

Planck (36 ±5)% vs X-ray (60±7)%

“Our X-ray flux limited sample, compared to approximately mass-limited SZ selected sample is over-represented with CC”
Lovisari et al (2017)
Planck (ESZ): early catalogue, 155 obj. z<0.55
VS
X-ray: REXCESS, z<0.2

KS test:
D=0.33 (w) and D=0.36 (c) -> p<0.01%

“In this paper, we confirmed that Planck-selected clusters tend to be morphologically more disturbed than their X-ray counterparts by using the centroid shift, which is more related to the dynamical state of the clusters than to their core properties”
Not so consistent results?

Nurgaliev et al (2017): Measure of the dynamical state with X-ray morphology indicators

SPT (SZ-selected): 91 clusters 0.25<z<1.2

400sd (X ray-selected): 36 clusters 0.35<z<0.9

“We find no evidence for a statistically significant difference in the X-ray morphologies of clusters selected via X-ray or SZ”
Not so consistent results?

Nurgaliev et al (2017):
Measure of the dynamical state with X-ray morphology indicators

SPT (SZ-selected):
91 clusters $0.25 < z < 1.2$

400sd (X ray-selected):
36 clusters $0.35 < z < 0.9$

Planck ($0.3 < z < 0.6$) (25 +/- 8)%

SPT ($0.3 < z < 0.6$) (29 +/- 7)%
Nurgaliev et al (2017):
Measure of the dynamical state with X-ray morphology indicators

SPT (SZ-selected):
91 clusters $0.25 < z < 1.2$

Planck(0.3-0.6) (25 +/- 8)%
SPT(0.3-0.6) (29 +/- 7)%

400sd (X ray-selected):
36 clusters $0.35 < z < 0.9$

<table>
<thead>
<tr>
<th>Sample</th>
<th>CC fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planck</td>
<td>29 ± 4</td>
</tr>
<tr>
<td>Planck z > 0.15</td>
<td>29 ± 5</td>
</tr>
<tr>
<td>ME-MACS</td>
<td>59 ± 5</td>
</tr>
<tr>
<td>HIFLUGCS (X)</td>
<td>56 ± 6</td>
</tr>
<tr>
<td>V09 low-z (X)</td>
<td>58 ± 10</td>
</tr>
<tr>
<td>V09 high-z /400d (X)</td>
<td>31 ± 8</td>
</tr>
<tr>
<td>Pascut15 (X)</td>
<td>74 ± 5</td>
</tr>
<tr>
<td>Santos10 (X)</td>
<td>60 ± 13</td>
</tr>
<tr>
<td>SPT all (SZ)</td>
<td>29 ± 5</td>
</tr>
<tr>
<td>SPT low-z (SZ)</td>
<td>29 ± 7</td>
</tr>
</tbody>
</table>

Table in MR et al (2017), MNRAS 468, 1917
Not so consistent results?

Nurgaliev et al (2017):
Measure of the dynamical state with X-ray morphology indicators

SPT (SZ-selected):
- 91 clusters $0.25<z<1.2$
- Planck(0.3-0.6) $(25 \pm 8\%)$
- SPT(0.3-0.6) $(29 \pm 7\%)$

Vikhlinin et al (2009):
The only X-ray selected sample apparently unaffected by the CC-bias.

NOT FLUX-LIMITED
But LUMINOSITY-LIMITED

<table>
<thead>
<tr>
<th>Sample</th>
<th>CC fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planck</td>
<td>29 ± 4</td>
</tr>
<tr>
<td>Planck $z > 0.15$</td>
<td>29 ± 5</td>
</tr>
<tr>
<td>ME-MACS</td>
<td>59 ± 5</td>
</tr>
<tr>
<td>HIFLUGCS (X)</td>
<td>56 ± 6</td>
</tr>
<tr>
<td>V09 low-z (X)</td>
<td>58 ± 10</td>
</tr>
<tr>
<td>V09 high-z /400d (X)</td>
<td>31 ± 8</td>
</tr>
<tr>
<td>Pascut15 (X)</td>
<td>74 ± 5</td>
</tr>
<tr>
<td>Santos10 (X)</td>
<td>60 ± 13</td>
</tr>
<tr>
<td>SPT all (SZ)</td>
<td>29 ± 5</td>
</tr>
<tr>
<td>SPT low-z (SZ)</td>
<td>29 ± 7</td>
</tr>
</tbody>
</table>

Table in MR et al (2017), MNRAS 468, 1917
Luminosity limited sample can be less affected by CC-bias (Vikhlinin et al 2009)

Chon & Bohringer (2017): comparison of a parent luminosity-limited sample with flux-limited subsamples

<table>
<thead>
<tr>
<th></th>
<th>Luminosity limit</th>
<th>flux limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VLS</td>
<td>FLS1</td>
</tr>
<tr>
<td>Non-CC</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>Cool core</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>51</td>
</tr>
</tbody>
</table>

CC fraction 38% 47% 48%
Difference in the disturbed and CC fraction in Planck and most X-ray selected samples

CC bias plays a large role in this difference

Not all X-ray selections are the same

Present and future prospects

Many information on cluster properties have been based so far on X-ray selected samples. Now, we can have large SZ-selected samples.

Some results produced by the Chandra SPT Visionary Program (McDonald+ 14,15,17, Sanders+18, Chiu+ 17, ...)

$0.3 < z < 1.9$, most $2 < M < 5 \times 10^{14} M_{\odot}$
Present and future prospects

Planck may provide the complementary low-z and high-M
Some follow-up programs already providing results

Complete ESZ Chandra/XMM follow up
PSZ1-cosmo almost complete
Results on morphology published
Other results probably soon
Relatively short observations
Present and future prospects

An XMM-Newton Heritage Program:
Witnessing the culmination of structure formation in the Universe
PIs: M. Arnaud & S. Ettori

Steering group:

3 Ms awarded in XMM-Newton AO17 to be planned in 3 years
Complete sample of 118 objects
Exposures tailored for getting thermodynamic and mass profiles up to R_{500}
Present and future prospects

An XMM-Newton Heritage Program:
Witnessing the culmination of structure formation in the Universe
PI: M. Arnaud & S. Ettori

S/N >6.5

Tier 1: the “recent” clusters population
0.05<0<0.2 (2<M<9 10^{14} M_{\odot})

Tier 2: the massive clusters population
M>7.25 10^{14} M_{\odot}, z<0.6
Present and future prospects

An XMM-Newton Heritage Program:
Witnessing the culmination of structure formation in the Universe

PI: M. Arnaud & S. Ettori

Results at next Snowcluster!

Thank you