The RomulusC Simulation
Exploring Galaxy Evolution in Clusters with High Resolution

Michael Tremmel
YCAA Fellow, Yale University

Tom Quinn (U of Washington)
Angelo Ricarte (Yale)
Arif Babul (U of Victoria)
Urmila Chadayammuri (Yale)
Priya Natarajan (Yale)
Daisuke Nagai (Yale)
Andrew Pontzen (UCL)
Marta Volonteri (IAP)
The Rich Physics of Clusters
AGN Feedback and Galaxy Evolution

Energy dissipation via shocks, sound waves in Perseus (Fabian+ 2003)

Quenched, green valley, and blue cloud galaxies in Virgo (Boselli + Gavazzi 2014)

“Jellyfish” galaxies experiencing ram pressure stripping that also host AGN (Poggianti+ 2017)
The Rich Physics of Clusters
AGN Feedback and Galaxy Evolution

RomulusC

Gas Density
Introducing RomulusC

The highest resolution cosmological hydro simulation of a cluster to date

Zoom-In Simulation

$M_{200}(z=0) = 1.5 \times 10^{14} \, M_{\text{sun}}$

Resolution:

250 pc, 2e5 M_{sun}

Tremmel+, in prep

Tremmel+ 2017

Menon+ 2015
Introducing RomulusC

The highest resolution cosmological hydro simulation of a cluster to date

<table>
<thead>
<tr>
<th>Name</th>
<th>Spatial Res. a (kpc)</th>
<th>M_{DM} b (M_\odot)</th>
<th>M_{gas} b (M_\odot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RomulusC</td>
<td>0.25</td>
<td>3.39×10^5</td>
<td>2.12×10^5</td>
</tr>
<tr>
<td>TNG300b</td>
<td>1.5</td>
<td>7.88×10^7</td>
<td>7.44×10^6</td>
</tr>
<tr>
<td>TNG100b</td>
<td>0.75</td>
<td>5.06×10^6</td>
<td>9.44×10^5</td>
</tr>
<tr>
<td>TNG50 (in progressc)</td>
<td>0.3</td>
<td>4.43×10^5</td>
<td>8.48×10^4</td>
</tr>
<tr>
<td>Horizon-AGNd</td>
<td>1</td>
<td>8.0×10^7</td>
<td>1.0×10^7</td>
</tr>
<tr>
<td>Magneticume</td>
<td>10</td>
<td>1.3×10^{10}</td>
<td>2.9×10^9</td>
</tr>
<tr>
<td>Magneticume high res</td>
<td>3.75</td>
<td>6.9×10^8</td>
<td>1.4×10^8</td>
</tr>
<tr>
<td>Magneticume ultra high res</td>
<td>1.4</td>
<td>3.6×10^7</td>
<td>7.3×10^6</td>
</tr>
<tr>
<td>C-EAGLEf,g</td>
<td>0.7</td>
<td>9.6×10^6</td>
<td>1.8×10^6</td>
</tr>
<tr>
<td>EAGLEe (50, 100 Mpc)</td>
<td>0.7</td>
<td>9.6×10^6</td>
<td>1.8×10^6</td>
</tr>
<tr>
<td>Omega500h</td>
<td>5.4</td>
<td>1.56×10^9</td>
<td>2.7×10^8</td>
</tr>
</tbody>
</table>

Zoom-In Simulation

$M_{200}(z=0) = 1.5e14 \ M_\odot$

Resolution:

250 pc, 2e5 M_\odot

Marinacci+ 17, Dubois+ 14, Bocquet+ 16, Armitage+ 18, Schaye+ 14, Shirasaki+ 18
Introducing RomulusC

The highest resolution cosmological hydro simulation of a cluster to date

Romulus25

Resolution:
250 pc, 2e5 M_{\odot}

Tremmel+ 2017
Menon+ 2015
Introducing RomulusC

The highest resolution cosmological hydro simulation of a cluster to date

- Accurate SMBH dynamics (Tremmel+ 2015, 2018)
- Early SMBH seeding (Tremmel+ 2017)
- Angular momentum limited accretion (Tremmel+ 2017, Pontzen, MT+ 2017)
- Thermal AGN feedback (Tremmel+ 2017)

Zoom-In Simulation
$M_{200}(z=0) = 1.5 \times 10^{14} \, M_\odot$

Resolution:
250 pc, 2e5 M$_\odot$
Accretion and Feedback in Romulus
Thermally driven outflows with angular momentum limited accretion

Modify the effective Bondi radius according to effective potential from resolved gas kinematics

\[\dot{M}_{\text{bondi}} \sim \pi R_{\text{acc}}^2 \rho v \]

\[U_{\text{eff}} = U_g + E_{\text{rot}} \sim E_{\text{gas,th}} \]

Tremmel+ 2017

Pontzen, MT+ 2017
Accretion and Feedback in Romulus

Thermally driven outflows with angular momentum limited accretion

0.2% mass-energy transferred **thermally** to surrounding gas

Overcooling is avoided due to

- **spatial** (250 pc) and time \((10^3-10^4 \text{ yrs})\) resolution for SMBH and gas

- Brief **cooling shutoff** (\(10^3-10^4 \text{ yrs}\))

- **Large-scale outflows** launched from 100 pc scales

Sub-Grid models **not optimized** for halos more massive than \(1e12 \text{ M}_{\odot}\)

RomulusC \(z = 0.5\)

Snowcluster March 22, 2018
Accretion and Feedback in Romulus

AGN-driven winds ubiquitous throughout simulation
Results from RomulusC: The ICM
Results from RomulusC: The ICM
RomulusC lies on observed Mass-Temp-Entropy relations

\[M_{500} - T_{500} \]

\[S(R_{500,2500}) - T_{500} \]

Tremmel+, in prep
Results from RomulusC: The ICM
Baryon Fractions

Total Baryons

Hot Gas

Stars

Tremmel+, in prep

Snowcluster March 22, 2018
Results from RomulusC: The ICM

The structure of the ICM

Temperature

RomulusC, $z = 0.2$

Entropy

Tremmel+, in prep
Results from RomulusC: The Brightest Cluster Galaxy (BCG) and AGN Feedback

BCG, z = 0

Tremmel+, in prep
Results from RomulusC: The BCG and AGN Feedback

AGN Winds and Quenching the BCG

Tremmel+, in prep

1000 kms^{-1}

$t = 8.4$ Gyr

$0.1 R_{200}$
Results from RomulusC: The BCG and AGN Feedback

AGN feedback limits gas cooling

Tremmel+, in prep
Results from RomulusC: The BCG and AGN Feedback

Powerful AGN winds quench star formation without destroying cool core

Tremmel+, in prep
Results from RomulusC: AGN and Quenching in Satellite Galaxies
Results from RomulusC: Quenching in Satellites

Low mass galaxies are nearly all quenched

Tremmel+, in prep
Results from RomulusC: Quenching in Satellites

Low mass galaxies are nearly all quenched

Observed relationship between quenching and galaxy mass, cluster position do not apply to dwarf galaxies

Tremmel+, in prep
Results from RomulusC: Quenching in Satellites

More Massive galaxies quench after closer approaches to cluster center

Pre-Processed?
More easily stripped by ram pressure?

High Mass \((M_{\text{star}} > 5\, \text{e}9)\)

Low Mass \((M_{\text{star}} < 5\, \text{e}9)\)

Stronger ram pressure

Hard to see this effect from observations
Results from RomulusC: AGN in Satellites
SMBH activity depends on radial position within the cluster

$M_\star > 10^{9.7}$, $< L_{\text{bol}} >_{10 \text{Myr}} > 1 \times 10^{43} \text{ ergs/s}$

$M_{\star} > 5 \times 10^9 \text{ M}_{\odot}$

10% rad. eff.

Ram pressure-driven AGN?
Ricarte+, in prep

Tremmel+ in prep

Marshall+ 2018
Summary

RomulusC: galaxy evolution and AGN in clusters with unprecedented detail

- Realistic ICM structure, overall properties
- Large scale AGN winds lead to quenching in BCG without disruption of cool core structure
- **Predicts** large quenched fraction for low mass galaxies regardless of mass, distance from cluster center
- **Predicts** peak of AGN activity around 0.8 x R$_{200}$
Future Work
RomulusC: galaxy evolution and AGN in clusters with unprecedented detail

• Examine effects of Ram Pressure on star formation and SMBH activity (Ricarte+ in prep)

• Study the nature of SMBH growth in dense environments (Ricarte+ in prep)

• Follow the evolution of AGN-driven outflows and their effect on the ICM (Chadayammuri+ in prep)

• Study the evolution of dwarf galaxies in clusters vs the field (Munshi+ in prep, Tremmel+ in prep, Wright+ in prep)

• Metallicity and density structure of the ICM (Butsky+ in prep)

More simulations in the works! 2e14-1e15 M\textsubscript{sun} halos
Summary

RomulusC: galaxy evolution and AGN in clusters with unprecedented detail

- Realistic ICM structure, overall properties
- Large scale AGN winds lead to quenching in BCG without disruption of cool core structure
- **Predicts** large quenched fraction for low mass galaxies regardless of mass, distance from cluster center
- **Predicts** peak of AGN activity around 0.8 x R_{200}
Results from RomulusC: The ICM

The structure of the ICM

![Graph showing the structure of the ICM with data from Arnaud 2010 and McDonald 2014.](image)
Sub-grid Model Optimization

Extensive parameter search limited to low mass halos ($1e12$ M_{\odot} and lower)

Tremmel+ 2017
Results from RomulusC: AGN in Satellites

low-level SMBH activity is suppressed in cluster environments

Active Fraction

RomulusC, $L_{\text{bol,10Myr}} > 1e42$ ergs/s
$L_{\text{bol,10Myr}} > 1e43$ ergs/s
Romulus25, $L_{\text{bol,10Myr}} > 1e42$ ergs/s
$L_{\text{bol,10Myr}} > 1e43$ ergs/s

$z = 0$ rad. eff. = 0.1
BH-Mstar

M_{BH} vs M_*

- Schramm+Silverman 13
- Romulus25

M_{star}-M_{halo}

- Romulus25
- Moster+ 13
- Kravtsov+ 14

Romulus25; Tremmel+ 2017
BH Acc history

SF History

Romulus25; Tremmel+ 2017
\[\sigma(\dot{M}_{\text{BH}})/<\dot{M}_{\text{BH}}>_{50\text{Myr}} \]

- Red: Advect
- Green: Bondi
- Blue: Romulus8

Time (Gyr)

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \]

Tremmel+ 2017
Ram pressure example