Electron Heating and Acceleration at Galaxy Cluster Shocks: Insights From *NuSTAR*

Daniel R. Wik
University of Utah

with Silvano Molendi, Fabio Gastaldello, Allan Hornstrup, NJ Westergaard, Greg Madjeski, Desiree Ferreira, Ming Sun, Craig Sarazin, Maxim Markevitch, Simona Giacintucci, et al.
NuSTAR Observations of Galaxy Clusters

• Cluster observations and IC results so far

• Temperature measurements in the Bullet Cluster

• Temperature measurements in Abell 665

• some grumpy old man grumbling
Sample of *NuSTAR* Observations

Also the Cygnus A cluster, the Abell 754 shock, Abell 523, RX J1347 (not yet observed), and Ophiuchus (two observations for twice the price!)
Detecting Inverse Compton Emission

\[\frac{L_R}{L_X} = \frac{B^2/(8\pi)}{aT_{CMB}^4} \]

160 Million K (14 keV)

Power Law Inverse Compton Emission

Far UV \rightarrow “Soft” X-ray \rightarrow “Hard” X-ray \rightarrow
IC Non-detections

Bullet

IC upper limit
B > 0.2 uG

Coma

Gastaldello+15

Wik+14
Abell 665

\[kT = 7 \text{ keV} \]

\[kT = 11 \text{ keV} \]

Vacca+ 2010
\[\langle B \rangle \sim 0.7 \text{ uG} \]

IC upper limit
\[B > 0.06 \text{ uG} \]
Thermal X-ray Spectra

45 Million K (4 keV)
160 Million K (14 keV)

Far UV \rightarrow “Soft” X-ray \rightarrow “Hard” X-ray \rightarrow
slower flow away from shock

Electron Temperature T_e, keV

r, arcsec

Chandra Measurements

Markevitch 06
Abell 3667 NW Relic

Sarazin+ 18
Bow Shocks: Electron-Ion Equilibration

Bullet Cluster: Markevitch et al. 2002

Abell 2146: Russell et al. 2012
Bow Shocks: Electron-Ion Equilibration

Bullet Cluster: Markevitch 2006 (de-projected)

Mach~3

Abell 2146: Russell et al. 2012 (projected)

Mach~2
Bullet Cluster

Chandra ACIS
~500 ks

0.8 – 4 keV

Shock

Cool Core

NuSTAR
270 ks

7-30 keV

Shock

Cool Core

Bullet Cluster
Spatial Modeling

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-12 keV</td>
<td>too hot</td>
</tr>
<tr>
<td>12-18 keV</td>
<td></td>
</tr>
<tr>
<td>18-25 keV</td>
<td>too cold</td>
</tr>
</tbody>
</table>

Chandra norm.

NuSTAR constraints

too hot
just right
too cold
NuSTAR-Chandra Joint Fit Results
NuSTAR-Chandra Joint Fit Results

Abell 2146: Russell et al. 2012

(projected)
Spatial Fitting Results — Modified Regions

Chandra SB

Chandra kT

Chandra kT

NuSTAR kT

March 20, 2018 - Daniel R. Wik - SnowCluster: Shock Temperature Measurements with NuSTAR - 16
Due to the small extent of the Mach~3 shock, \textit{NuSTAR} cannot constrain between the two heating scenarios. Need HEX-P!

Probe class hard X-ray telescope with 15” HPD
Abell 665

Chandra ACIS

$0.7 - 2$ keV

~ 150 ks

Ear1

Ear2

N

S

A

C1 (Cool Front)

C2 (Cool Front)

Dasadia+ 16
Abell 665

Chandra ACIS
~150 ks

NuSTAR
200 ks

0.7-2 keV

Ear2

N

Ear1

S

C1 (Cool Front)

C2 (Cool Front)

S1 (Shock)

915 kpc

300"

4-25 keV

Declination

Right ascension

32:00 30 31:00 30 8:30:00 30 29:00
Abell 665 Temperature Map
Abell 665 Temperature Map

Chandra

NuSTAR

kT (keV)
Abell 665 Temperature Map

Cold fronts
Shock front

APEC norm (arbitrary values)
Abell 665 Temperature Map

Projected

\[kT \text{ Jump } \sim 3x \]
\[\text{implied Mach } \# \sim 2.5-3 \]
\[\text{if shock heated} \]

Chandra SB jump
Mach \# \sim 3.4

De-projected (predicted)
Abell 665 Temperature Map

Projected

kT Jump $\sim 3x$ implies Mach $\# \sim 2.5-3$

if shock heated

Chandra SB jump
Mach $\# \sim 3.4$

De-projected (predicted)
Abell 665 Temperature Map

Projected

kT Jump ~ 3x implies Mach # ~ 2.5-3
if shock heated

Chandra SB jump
Mach # ~ 3.4

De-projected (predicted)

Measured

kT (keV)

NuSTAR
(colors, dashed)

adiabatic model

Chandra (black)

Radius (kpc)
A665 kT Measurement Caveats

- No accounting for contributions of PSF scattering

- NuSTAR-only spectral fits, may be biased toward higher kTs along multi-T lines-of-sight

- Point source contamination in faint regions possible concern

- Direct deprojection fits to joint Chandra-NuSTAR spectra will provide the most accurate kT of the shock

- Shock cooler to east — Mach # variation across shock?
NuSTAR Coma Cluster Mosaic
Ophiuchus Cluster Observation

Chandra Residual
(0.6-7.5 keV)

XMM Entropy

Eastern inner cold front

Southern outer cold front

Concave discontinuity

Southern surface brightness excess

kT/ne^{2/3} (keV cm^2)

Werner+16
Ophiuchus Cluster Observation

Time of NuSTAR Observation

Counts/cm²/sec (15–50 keV)

Granat 1716–249

DAILY

Swift/BAT Transient Analysis

H. Krimm, GSFC/USRA for the BAT team

Generated Wed Nov 8 23:11:29 UTC 2017
Ophiuchus Cluster Observation

A B
Ophiuchus Cluster Observation
Potential of Abell 2146 with NuSTAR

(a)

Region for Spectral Simulation

Shock Fronts

1 arcmin
220 npc

(b)

Simulated Upstream Shock Spectra for A and B Telescopes

Counts/s/keV

Energy (keV)
Summary

NuSTAR can provide complimentary kT measurements, especially for hot clusters