Radiative transfer modeling of Lyα emitters during the epoch of reionization

Raphael Sadoun

Collaborators: Zheng Zheng (Utah), Jordi Miralda-Escudé (Barcelona), Hy Trac (CMU), Renyue Cen (Princeton)

SnowCLAW - March 19-24 2017
Lyα fraction

\[X_{\text{Ly} \alpha} = \text{Fraction of continuum-selected galaxies with Ly} \alpha \text{ emission above given EW threshold} \]

Observations show \(X_{\text{Ly} \alpha} \) drops rapidly from \(z \approx 6 \) to 7

(Fontana+10, Stark+10, Pentericci+11, Ono+12, Schenker+12, Caruana+14, Schmidt+16, Dan. Stark & Mark Dijkstra talks)

Luminosity-dependent effect

Ono+2012
Lyα fraction

$X_{\text{Ly}\alpha} = \text{Fraction of continuum-selected galaxies with Ly}\alpha\text{ emission above given EW threshold}$

Observations show $X_{\text{Ly}\alpha}$ drops rapidly from $z \sim 6$ to 7

(Fontana+10, Stark+10, Pentericci+11, Ono+12, Schenker+12, Caruana+14, Schmidt+16, Dan. Stark & Mark Dijkstra talks)

Signature of reionization or intrinsic galaxy evolution (or both)?

Luminosity-dependent effect

Ono+2012
What can cause the reduction in Lyα flux?

Intrinsic Lyα emission (before IGM attenuation) itself is possibly reduced towards high-z due to:

- Evolution of dust distribution in galaxies (Dayal & Ferrara 2012)
- f_{esc} increases towards high-z (e.g. Kuhlen & Faucher-Giguere 2012)

but Lyα LF evolves more rapidly than UV LF
What can cause the reduction in Ly\(\alpha\) flux?

IGM Ly\(\alpha\) opacity increases during epoch of reionization because:

- **Global HI fraction increases in diffuse IGM ('bubble' models)**
 Requires \(\Delta x_{\text{HI}} \sim 0.5\) over \(\Delta z \sim 1\) or \(\Delta t \sim 200\) Myr (e.g. Dijkstra 2014)

- **Abundance of self-shielded absorbers increases due to rapid evolution of ionizing background ('web' models)**

 Can reproduce \(X_{\text{Ly}\alpha}\) evolution (Bolton & Haehnelt 2013) but abundances may have been overestimated (Mesinger+14)

- **Both of the above ('web-bubble' models): Mesinger+14, Kakiichi+2016**

Pentericci+2014
What can cause the reduction in Lyα flux?

• Possible alternative we want to test:

 CGM gas around galaxies can become optically thick to Lyα if it can self-shield against the rapidly evolving external ionizing background

• We construct radiative transfer models of Lyα emitting galaxies (LAEs) which include:
 - Analytical description of gaseous environment (density+velocity) around typical high-z LAE
 - Self-shielding calculations to get corresponding neutral gas distribution for given ionizing background level
 - Full 3D radiative transfer calculations to predict Lyα properties
LAE model: total gas density

NFW Halo (replaced with constant density core at $r < r_{\text{core}}$) + IGM density profile around collapsed structures from Barkana 2004

Model Parameters: $M_{\text{halo}}, r_{\text{core}}$
LAE model: gas velocity

V_{tot} [km s$^{-1}$]

$M_{\text{halo}} = 10^{10.5} M_\odot$

Dispersion dominated region (DM halo) + Infall region (CGM) + Hubble-flow dominated region (IGM)

$0 < r < r_{\text{core}}$

$0 < r < r_{\text{vir}}$

$r_{\text{vir}} < r < r_{\text{infall}}$

$r > r_{\text{infall}}$
We solve photoionization equilibrium with

$$\Gamma_{\text{LAE,ss}}(r) = \int_{\nu_L}^{\infty} \frac{f_{\text{esc}} L_{\nu} e^{-\tau_{\nu,\text{cen}}}}{4\pi r^2 h\nu} a_{\nu} d\nu + \Gamma_{\text{UV,ss}} = \int_{4\pi} d\Omega \int_{\nu_L}^{\infty} \frac{I_{\nu} e^{-\tau_{\nu,\text{out}}}}{h\nu} a_{\nu} d\nu$$

$$(L_{\nu} \propto \text{SFR} \propto M_{\text{halo}})$$
We solve photoionization equilibrium with

$$\Gamma_{\text{LAE,ss}}(r) = \int_{\nu_L}^{\infty} \frac{f_{\text{esc}} L_\nu e^{-\tau_\nu,\text{cen}}}{4\pi r^2 h\nu} a_\nu d\nu + \Gamma_{\text{UV,ss}} = \int_{4\pi} d\Omega \int_{\nu_L}^{\infty} \frac{I_\nu e^{-\tau_\nu,\text{out}}}{h\nu} a_\nu d\nu$$

(L_\nu \propto \text{SFR} \propto M_{\text{halo}})
We solve photoionization equilibrium with

\[
\Gamma_{\text{LAE,ss}}(r) = \int_{\nu_L}^{\infty} f_{\text{esc}} \frac{L_{\nu} e^{-\tau_{\nu,\text{cen}}}}{4\pi r^2 h\nu} a_{\nu} d\nu + \Gamma_{\text{UV,ss}} = \int_{4\pi} d\Omega \int_{\nu_L}^{\infty} \frac{I_{\nu} e^{-\tau_{\nu,\text{out}}}}{h\nu} a_{\nu} d\nu
\]

\((L_{\nu} \propto \text{SFR} \propto M_{\text{halo}})\)
Monte-Carlo Ly\(\alpha\) radiative transfer

Parallel version of Monte-Carlo Ly\(\alpha\) RT code from Zheng & Miralda-Escude (2002)

1. Photons are launched from center of cloud with initial frequency \(\nu_i = \nu_{\text{Ly}\alpha}\)
2. Choose random propagation direction, draw \(\tau\) from \(\exp(-\tau)\) distribution and find scattering location corresponding to \(\tau\) along chosen direction
3. Calculate new \(\nu\) after scattering
4. Repeat 2-3 until photons escape gas cloud

Number of photons used for each individual RT calculations = \(10^5\)
Predicted Lyα spectra

Full spectra (all photons)

Δv [km s$^{-1}$]

\[F_\lambda [10^{-20} \text{ erg s/cm}^2/\text{Å}] \]

- dashed, intrinsic
- black, at r_h
- blue, at $10r_h$

$\Delta \lambda_{\text{obs}}$ [Å]

Effect of finite aperture size (photons within 1"

Δv [km s$^{-1}$]

\[F_\lambda [10^{-20} \text{ erg s/cm}^2/\text{Å}] \]

- green, $\Gamma_{\text{UV}} = 10^{-13}$ s$^{-1}$
- blue, $\Gamma_{\text{UV}} = 10^{-14}$ s$^{-1}$

Sadoun, Zheng & Miralda-Escudé (1607.08247)

Fiducial RT model: $M_{\text{halo}}=10^{10.5}M_\odot$, $r_{\text{core}}=0.25r_{\text{vir}}$, $f_{\text{esc}}=0.1$
Predicted Lyα spectra

Full spectra
(all photons)

- **Δλ [Å]**
- **F_λ [10^-20 erg/s/cm^2/Å]**

- **intrinsic**
- **at r_h**
- **at 10 r_h**

Observed spectra
(Red peak + Photons within 1")

- **Γ_{UV} = 10^{-13} s^{-1}**
- **Γ_{UV} = 10^{-14} s^{-1}**

We find significant apparent flux reduction in the red peak within typical 1" aperture.
Self-shielded neutral infall region causes additional spatial diffusion which flattens SB profile.
Lyα flux ratios: dependence on halo mass

(Weak) dependence of flux ratio on halo mass can potentially explain luminosity-dependent effect in observed Lyα fraction evolution
Predictions for the Lyα fraction evolution

\[X_{\text{Ly}\alpha} = \int_{\text{EW}_t} p(\text{EW}) d\text{EW} \]

Sadoun, Zheng & Miralda-Escudé (1607.08247)

$p(\text{EW})_{z=6}$ based on observed $p(\text{EW})$ of LBGs at $z \sim 3$ (Shapley+2003)

$p(\text{EW})_{z=7} = p(\text{EW}/f)_{z=6}$ where f is the Lyα flux ratio predicted by the RT model for a given change in Γ_{UV}
Modeling LAEs in cosmological reionization simulations

AMR reionization simulations (RadHydro) from Trac, Cen & Mansfield 2015
Modeling LAEs in cosmological reionization simulations

The simulation reproduces well the:

UV LFs of LBGS and LAES

The figure shows a graph of the UV luminosity function (UV LF) with data points and error bars for various models, including model predictions and observations. The x-axis represents the UV magnitude (M_{UV}), and the y-axis represents the UV luminosity density (\dot{L}_{UV}) in units of $\text{mag}^{-1} \text{Mpc}^{-3}$.

Global reionization history

The graph on the right shows the reionization history with different models and data points. The x-axis represents redshift (z), and the y-axis represents the parameter $1 - Q_{HI}$, indicating the fraction of ionized hydrogen. The models include ML + 68% Credibility Interval, Robertson et al. 2013, Forced Match to WMAP τ. Additional data points and markers are also shown for different astronomical phenomena such as Ly-α transmission, dark Ly-α forest pixels, quasar near zone, GRB damping wing absorption, Ly-α emitters, Ly-α galaxy clustering, and Ly-α emission fraction.
Modeling LAEs in cosmological reionization simulations

Evolution of the Lyα luminosity function

Sadoun, Zheng, Trac & Cen (in prep.)
Modeling LAEs in cosmological reionization simulations

Evolution of the Lyα luminosity function

Sadoun, Zheng, Trac & Cen (in prep.)
Modeling LAEs in cosmological reionization simulations

Evolution of the Lyα luminosity function

Sadoun, Zheng, Trac & Cen (in prep.)
Modeling LAEs in cosmological reionization simulations

Evolution of the Lyα luminosity function

Rapid evolution of the Lyα LF between $z\sim5.7$ and $z\sim6.6$ predicted by the model in tension with observed evolution.

Possible cause: reionization topology more complicated than the simulation can capture?

Sadoun, Zheng, Trac & Cen (in prep.)
Summary

• We quantified the reduction in Lyα flux caused by self-shielding of the CGM gas around LAEs at z~6-7 as a response of the rapidly evolving UV background

• We find that the self-shielded gas becomes optically thick to Lyα at z~7 which induces a flattening of the Lyα SB profile and a factor of ~1.5-2 reduction in Lyα flux within 1''

• The model can reproduce well the observed Lyα fraction evolution at different UV luminosities and Lyα EW detection thresholds

• Caveats: Unable to constraint Γ_{UV} evolution because of large observational error bars, no clumping considered, idealized isotropic gas distributions

• Currently working on modeling LAEs in cosmological reionization simulations...stay tuned!
Thanks!
Model uncertainties: effect on neutral gas distribution

$r_{\text{core}} = 0.5 \ r_h$

$f_{\text{esc}} = 0.2$

$\Gamma_{\text{LAE}} = 0$

$n_{\text{HI}} \ [\text{cm}^{-3}]$

$r \ [\text{physical kpc}]$

$\Gamma_{\text{UV}} = 10^{-14} \ \text{s}^{-1}$

$\Gamma_{\text{UV}} = 10^{-13} \ \text{s}^{-1}$
Model uncertainties: effect on Lyα line profile

within 1''
Model uncertainties: effect on Lyα fraction

$X_{\text{Ly}\alpha}$ vs z

- **EW > 55 Å**
- **$M_{\text{UV}} > -20.25$**

- **Fiducial**
- **$r_{\text{core}} = 0.5 \, r_h$**
- **$f_{\text{esc}} = 0.2$**
- **$\Gamma_{\text{LAE}} = 0$**

Data Sources:
- Ono+2012
- Stark+2011
- Schenker+2012
- Treu+2013
- Schenker+2014

Definition:
- $V_0 = V > 20.25$