GLASS (Schmidt et al. 2014; Treu et al. 2015) is an HST cycle 21 grism spectroscopy program observing 10 galaxy clusters including the 6 Hubble Frontier Fields (HFF) and 4 CLASH clusters. GLASS observed each cluster core with the G102 (10hrs/cluster) and G141 (4hrs/cluster) grisms at two position angles and two parallel fields per cluster with the ACS G800L grism (7hrs/field). The wavelength coverage on the cluster cores is $\lambda \sim 0.8-1.7 \mu m$ enabling a wide range of scientific applications of the data.

The first public NIR data release from GLASS is available at: https://archive.stsci.edu/prepds/glass/

It contains NIR G102 & G141 spectra of over 20000 objects (5000 with $m_{F140W} < 24$), emission line redshift catalogs and dedicated softwares to inspect and explore the GLASS data products:

- Spectral Inspection
- Redshift Inspection
- Morphological Inspection

Rest-Frame UV Lines In GLASS

Schmidt et al. (2017) presented the GLASS rest-frame stack of a $z=6.11$ quintuply imaged object (Monna et al. 2014). The Lyα ($EW_{Ly\alpha} = 68\pm6\AA$) and CIV ($EW_{CIV} = 24\pm4\AA$) detections and the CIII], HeII, OIII] limits were used to study the properties of this young (Age ~ 50Myr) star-forming (SFR ~ 10M_\odot/yr) low-mass ($M^* \sim 10^9 M_\odot$) galaxy through a comparison with photoionization models. The GLASS results confirm and agree with the Lyα, CIV and OIII] detections presented by Mainali et al. (2017).

Comparison between emission line ratio constraints from GLASS (gray area) from the $z=6.11$ galaxy and photoionization models of AGN (gray diamonds; Feltre et al. 2016) and star-forming galaxies (colored circles; Gutkin et al. 2016). The data prefer models with radiation powered by star formation.