
Sterile neutrino and singlet Higgs signatures at colliders

Ian Shoemaker
UCLA
OUTLINE

- Singlet Higgs + sterile neutrino models have many motivations: dark matter, baryogenesis, neutrino masses.
- Bounds on the Higgs sector are relaxed compared to the SM.
- Collider signatures depend on the sterile neutrino mass:
 - Light neutrinos appear as missing energy.
 - Intermediate neutrinos decay with macroscopically displaced vertex with lepton number violation.
 - Heavy neutrinos decay promptly with lepton number violation.
Motivations

- A \simkeV sterile neutrino can be dark matter and explain pulsar kicks [Alex Kusenko’s talk].
Motivations

- A \~\text{keV} sterile neutrino can be dark matter and explain pulsar kicks [Alex Kusenko’s talk].
- Singlet Higgs allows for the possibility of a 1st order phase transition, making EW baryogenesis possible [Petraki, Kusenko (2008)].
Motivations

- A ~keV sterile neutrino can be dark matter and explain pulsar kicks [Alex Kusenko’s talk].
- Singlet Higgs allows for the possibility of a 1st order phase transition, making EW baryogenesis possible [Petraki, Kusenko (2008)].
- Neutrinos have mass.
Neutrino masses

- In the standard model, neutrinos are massless.
Neutrino masses

- In the standard model, neutrinos are massless.

\[L = L_{SM} + ? \]
Neutrino masses

- In the standard model, neutrinos are massless.

\[L = L_{SM} + ? \]

- This suggests the existence of right-handed neutrinos:
Neutrino masses

- In the standard model, neutrinos are massless.

\[L = L_{SM} + ? \]

- This suggests the existence of right-handed neutrinos:

\[L = L_{SM} + i\bar{N}_a \phi N_a - y_{aa} \epsilon^{ij} H_i \left(\bar{L}_a \right)_j N_a - \frac{M_a}{2} \bar{N}_a^c N_a + \text{h.c.} \]
Neutrino masses

- In the standard model, neutrinos are massless.

 \[L = L_{SM} + ? \]

- This suggests the existence of right-handed neutrinos:

 \[L = L_{SM} + i\bar{N}_a \phi N_a - y_{aa} \epsilon^{ij} H_i (\bar{L}_\alpha)_j N_a - \frac{M^a}{2} \bar{N}_a^c N_a + \text{h.c.} \]

- Thus active and sterile neutrinos mass mix via:

 \[\hat{M} = \begin{pmatrix} 0 & m_D \\ m_D & M_a \end{pmatrix} \]
Seesaw mechanism

- With both Dirac and Majorana mass terms, neutrinos mix via:
 \[
 \hat{M} = \begin{pmatrix} 0 & m_D \\ m_D & M_a \end{pmatrix}
 \]

- When \(m_D << M_a \) mass eigenstates separate into two types:
Seesaw mechanism

- With both Dirac and Majorana mass terms, neutrinos mix via:

$$\hat{M} = \begin{pmatrix} 0 & m_D \\ m_D & M_a \end{pmatrix}$$

- When $m_D \ll M_a$ mass eigenstates separate into two types:

$$m_{\text{active}} \sim \frac{m_D^2}{M}, \quad m_{\text{sterile}} \sim M_a.$$
Seesaw mechanism

- With both Dirac and Majorana mass terms, neutrinos mix via:
 \[
 \hat{M} = \begin{pmatrix}
 0 & m_D \\
 m_D & M_a
 \end{pmatrix}
 \]

- When \(m_D \ll M_a \) mass eigenstates separate into two types:
 \[
 m_{\text{active}} \sim \frac{m_D^2}{M}, \quad m_{\text{sterile}} \sim M_a.
 \]

 \[
 m_{\text{active}} \sim M_a \sin^2 \theta
 \]
Seesaw mechanism

- With both Dirac and Majorana mass terms, neutrinos mix via:
 \[\hat{M} = \begin{pmatrix} 0 & m_D \\ m_D & M_a \end{pmatrix} \]

- When \(m_D \ll M_a \) mass eigenstates separate into two types:
 \[m_{\text{active}} \sim \frac{m_D^2}{M}, \quad m_{\text{sterile}} \sim M_a \]
 \[m_{\text{active}} \sim M_a \sin^2 \theta \]

- Where does this new scale \(M_a \) come from?
Singlet extended Higgs sector

- Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:
Singlet extended Higgs sector

- Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[L \supset \frac{f_a}{2} S \bar{N}_a^c N_a + \text{h.c.} \]
Singlet extended Higgs sector

Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[
L \supset \frac{f_a}{2} \bar{S} N_a^c N_a^c + \text{h.c.} \quad \Rightarrow \quad M_a = f_a \langle S \rangle
\]
Singlet extended Higgs sector

- Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[L \supset \frac{f_a}{2} S \overline{N}_a^c N_a + \text{h.c.} \quad \Rightarrow \quad M_a = f_a \langle S \rangle \]

- Most general potential (assuming no new symmetries):
Singlet extended Higgs sector

- Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[L \supset \frac{f_a}{2} S \bar{N}_a N_a + \text{h.c.} \quad M_a = f_a \langle S \rangle \]

- Most general potential (assuming no new symmetries):

\[
V(H,S) = -\frac{1}{2} m_S^2 S^2 - m_H^2 |H|^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S + \lambda_H |H|^4 \\
+ \frac{1}{4} \lambda_S S^4 + 2 \lambda_{HS} |H|^2 S^2
\]
Singlet extended Higgs sector

- Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[L \supset \frac{f_a}{2} S\bar{N}_a^c N_a + \text{h.c.} \quad \Rightarrow \quad M_a = f_a \langle S \rangle \]

- Most general potential (assuming no new symmetries):

\[
V(H,S) = -\frac{1}{2} m_s^2 S^2 - m_H^2 |H|^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S + \lambda_H |H|^4 \\
+ \frac{1}{4} \lambda_s S^4 + 2 \lambda_{HS} |H|^2 S^2
\]

- DM keV neutrinos will not be produced at colliders.
Singlet extended Higgs sector

- Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[L \supset \frac{f_a}{2} S \bar{N}_a^c N_a + \text{h.c.} \quad M_a = f_a \langle S \rangle \]

- Most general potential (assuming no new symmetries):

\[
V(H,S) = -\frac{1}{2} m_s^2 S^2 - m_H^2 |H|^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S + \lambda_H |H|^4 \\
+ \frac{1}{4} \lambda_S S^4 + 2 \lambda_{HS} |H|^2 S^2
\]

- DM keV neutrinos will not be produced at colliders.
- Can we find evidence of sterile neutrinos at a collider?
How to produce sterile neutrinos at a collider
Gauge structure of the SM

\[SU(3) \cap SU(1) \cap SU(2) \]
Gauge structure of the SM
Gauge structure of the SM

$\begin{array}{c}
N_a \\
\begin{array}{ccc}
\text{SU}(3) & & \\
\text{SU}(1) & & \text{SU}(2)
\end{array}
\end{array}$
Gauge structure of the SM

- SU(3)
- SU(2)
- SU(1)

N_a

Dirac mass
Gauge structure of the SM

N_a S

Mass mixing and coupling

SU(3) SU(1) SU(2)

d u e

Q

W

γ

H

Z
Gauge structure of the SM

Mass mixing and coupling

Yukawa term
Gauge structure of the SM

Yukawa term

Large yukawa couplings + large singlet-doublet Higgs mixing = sterile neutrinos produced at a collider.
Higgs mixing and couplings

- Singlet and doublet Higgses mix:

\[
\begin{pmatrix}
H_1 \\
H_2
\end{pmatrix} = \begin{pmatrix}
\cos \phi_{HS} & \sin \phi_{HS} \\
-\sin \phi_{HS} & \cos \phi_{HS}
\end{pmatrix}
\begin{pmatrix}
h \\
S
\end{pmatrix}
\]

- Where the mixing angle is determined by scalar potential.
Higgs mixing and couplings

- Singlet and doublet Higgses mix:

\[
\begin{pmatrix}
H_1 \\
H_2
\end{pmatrix} =
\begin{pmatrix}
cos\phi_{HS} & sin\phi_{HS} \\
-sin\phi_{HS} & cos\phi_{HS}
\end{pmatrix}
\begin{pmatrix}
h \\
S
\end{pmatrix}
\]

- Where the mixing angle is determined by scalar potential.

- We adopt the convention \(M_{H_2} > M_{H_1} \)
Higgs mixing and couplings

- Singlet and doublet Higgses mix:
 \[
 \begin{pmatrix}
 H_1 \\
 H_2
 \end{pmatrix} =
 \begin{pmatrix}
 \cos \phi_{HS} & \sin \phi_{HS} \\
 -\sin \phi_{HS} & \cos \phi_{HS}
 \end{pmatrix}
 \begin{pmatrix}
 h \\
 S
 \end{pmatrix}
 \]

- Where the mixing angle is determined by scalar potential.
- We adopt the convention \(M_{H_2} > M_{H_1} \).
- The couplings to SM and sterile neutrinos now given by:

<table>
<thead>
<tr>
<th></th>
<th>Light Higgs ((H_1))</th>
<th>Heavy Higgs ((H_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs-Neutrino coupling</td>
<td>(g_{1NN} = -if_a \sin \phi_{HS})</td>
<td>(g_{2NN} = -if_a \cos \phi_{HS})</td>
</tr>
<tr>
<td>Higgs-SM coupling</td>
<td>(g_{1SM} = g_{SM} \cos \phi_{HS})</td>
<td>(g_{2SM} = g_{SM} \sin \phi_{HS})</td>
</tr>
</tbody>
</table>
Higgs branching fractions

- With modified Higgs-SM couplings and the introduction of sterile neutrino mode, BR are altered as

- **Light Higgs:**

 \[Br(H_1 \rightarrow SM) = \frac{g_{1SM}^2 Br(h \rightarrow SM) \Gamma_h}{g_{1SM}^2 \Gamma_h + \Gamma(H_1 \rightarrow N_a N_a)} \]

- **Heavy Higgs:**

 \[Br(H_2 \rightarrow SM) = \frac{g_{1SM}^2 Br(h \rightarrow SM) \Gamma_h}{g_{1SM}^2 \Gamma_h + \Gamma(H_2 \rightarrow N_a N_a) + \Gamma(H_2 \rightarrow H_1H_1)} \]
Mass mixing determines bounds

1. Small $\sin \phi_{HS}$: $H_1 \approx h$, $H_2 \approx S$.
 - Light Higgs is mostly doublet obeys SM LEP bound.
 - Heavy Higgs is mostly singlet weakened EWPO bound.

2. Maximal mixing: $H_{1,2} = \frac{1}{\sqrt{2}} (h \pm S)$.
 - Light Higgs is mixed weakened LEP bound.
 - Heavy Higgs is mixed weakened EWPO bound.

3. Large $\sin \phi_{HS}$: $H_1 \approx S$, $H_2 \approx h$.
 - Light Higgs is mostly singlet weakened LEP bound.
 - Heavy Higgs is mostly doublet obeys SM EWPO bound.
How to evade the LEP bound

- A SM Higgs is ruled out at 95% CL for $M_h < 114.4 \text{GeV}$.
 - Assumes SM production cross section and SM branching ratios.
- However LEP has non-SM bounds, constrained by the parameter:

\[
\xi^2(H_i \rightarrow X_{SM}) = \left(\frac{\sigma(e^+e^- \rightarrow ZH_i)}{\sigma(e^+e^- \rightarrow Zh_{SM})} \right) \times \frac{\text{Br}(H_i \rightarrow X_{SM})}{\text{Br}(h_{SM} \rightarrow X_{SM})}
\]

- Reduced HZZ coupling and/or reduced SM branching fractions weakens the LEP bound.
LEP bounds are generically relaxed

Maximal mixing reduces LEP bound to $M_{H_1} \sim 45\,\text{GeV}$

$\sin \phi_{HS} = 1/\sqrt{2}$, $M_N = 20\,\text{GeV}$
Electroweak precision observable (EWPO) bounds

- Radiative corrections to the W and Z boson propagators from the scalar sector imply a weakening of EWPO constraints.
- Maximal mixing reduces the EWPO upper bound on the heaviest Higgs to $M_{H_2} \leq 220$ GeV.

[Barger et al. (2007), Profumo, Ramsey-Musolf, Shaughnessy (2007)]
Light Higgs branching ratios

\[
\sin \phi_{HS} = \frac{1}{\sqrt{2}} \quad M_{N_2} = 20\text{GeV} \quad \langle S \rangle = 200\text{GeV}
\]

\[\text{Br}(H_1 \rightarrow \text{ii}) \]

![Graph showing branching ratios as a function of \(M_{H_1}\).]
Sterile neutrino decays

Lepton number violation in all modes.
Displaced vertices

Intermediate neutrino masses $50 \text{GeV} \leq M_{N_2} \leq 150 \text{GeV}$ decay displaced from production region.
Light neutrinos appear as missing energy

\[qq \rightarrow qqVV \rightarrow qqH \rightarrow qq + \text{inv} \]

- Neutrinos with \(\leq 50\text{GeV} \) decay outside the detector, and appear as missing energy.
- Discoverability of invisibly decaying Higgs assessed in [Eboli, Zeppenfield (2000)].
- When \(Br(H_i \rightarrow N_2N_2) \approx 100\% \), and the Higgs is produced via weak boson fusion appropriate cuts on the correlation of the forward jets allow for a 5\(\sigma \) detection.
Summary

- Extended singlet sector relaxes both direct LEP and indirect EWPO bounds on Higgs masses.
 - Viable models have large NN branching fractions.

- Collider signatures depend on the sterile neutrino mass:
 - Light neutrinos appear as missing energy.
 - Intermediate neutrinos decay with macroscopically displaced vertex with lepton number violation.
 - Heavy neutrinos decay promptly with lepton number violation.
Extra slides
Heavy higgs decays

![Graph showing the decay modes of H2, including bb, NN, gg, TT, cc, WW, ZZ, and tt. The graph displays the BR(H2→ii) against MH2[GeV].]
Sterile neutrino decays

\[\text{Br}(N_2 \rightarrow ii) \]

Missing energy

Displaced vertices

Prompt decays

Lepton number violation in all modes.
Extended Higgs sector

- The real singlet field has mass mixings and couplings to SM Higgs:

\[
V(H,S) = -\frac{1}{2} m_S^2 S^2 - m_H^2 |H|^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S + \lambda_H |H|^4 \\
+ \frac{1}{4} \lambda_S S^4 + 2\lambda_{HS} |H|^2 S^2
\]

- For example:
Suppose that, like all other SM fermion masses, the RH Majorana mass comes from the Higgs mechanism:

\[L \supset \frac{f_a}{2} S N_a^c N_a + \text{h.c.} \quad \quad \quad M_a = f_a \langle S \rangle \]

Most general potential (assuming no new symmetries):

\[
V(H,S) = -\frac{1}{2} m_s^2 S^2 - m_H^2 |H|^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S + \lambda_H |H|^4 \\
+ \frac{1}{4} \lambda_s S^4 + 2 \lambda_{HS} |H|^2 S^2
\]

Kusenko (2006) has shown that a keV sterile neutrino can be DM and explain pulsar kicks.

Petraki and Kusenko (2008) have shown that S decays can be dominant production mechanism of DM and the presence of S allows for a 1st order EWPT.
Review

- Constraints on the Higgs boson properties from the hep-ph/9703412