Lecture 10: Propagation of Uncertainties

"Uncertainty"

Photograph by Michelle Lane

Physics 3719
Spring Semester 2011
Note on Computers in Lab:

- Computers in SP 306/307 will have the login procedure changed. (Mandate for all campus computers.)
- Use same login (UID and password) as you use for the Campus Information System.
- This change is effective today.
Discussion

• Which will give the better uncertainty in the measurement of the rate \(r \) of radioactive decays:
 - Counting the number of decays in 100 seconds?
 - Counting the number of decays in 10 seconds, doing this 10 times, then taking the average?
Lab 3 Experiments

- Gravitational Constant G
- Speed of Light C
- Electron Charge-to-Mass Ratio e/m
- Millikan Oil Drop Experiment
- Photoelectric Effect
- Hydrogen Balmer Spectrum
- Franck-Hertz Experiment
- High-Resolution Optical Spectroscopy
Propagation of Uncertainties
Propagation of Uncertainties

\[f = f(a, b, c \ldots) \]

\[S_f^2 = \left(\frac{\partial f}{\partial a} \right)^2 S_a^2 + \left(\frac{\partial f}{\partial b} \right)^2 S_b^2 + \left(\frac{\partial f}{\partial c} \right)^2 S_c^2 + \ldots \]
Propagation of Uncertainties

\[f = f(a, b, c \ldots) \]

\[S_f^2 = \left(\frac{\partial f}{\partial a} \right)^2 S_a^2 + \left(\frac{\partial f}{\partial b} \right)^2 S_b^2 + \left(\frac{\partial f}{\partial c} \right)^2 S_c^2 + \ldots \]

Where is this from?

14 January 2011
• Consider function of one variable \(f(x) \)

• Assume errors small, so \(f(x) \sim \text{linear} \)

\[
S_f = f(x + S_x) - f(x) \approx \frac{\Delta f}{\Delta x} \cdot S_x \rightarrow \frac{\partial f}{\partial x} \cdot S_x
\]

\[
S_f = \left| \frac{\partial f}{\partial x} \right| \cdot S_x
\]
• Consider function of one variable $f(x)$
• Assume errors small, so $f(x) \sim \text{linear}$

$$S_f = f(x + S_x) - f(x) \approx \frac{\Delta f}{\Delta x} \cdot S_x \rightarrow \frac{\partial f}{\partial x} \cdot S_x$$

Generally we express errors as positive, so...

$$S_f = \left| \frac{\partial f}{\partial x} \right| \cdot S_x$$
Now, what about multivariate functions e.g. $f = f(x,y)$?

Assume errors small, so $f(x) \sim$ linear

\[f = f(x, y) \]

\[S_f = \left| \frac{\partial f}{\partial x} \right| \cdot S_x + \left| \frac{\partial f}{\partial y} \right| \cdot S_y \]
• e.g. Measure the heights x and y of two people

• What is the uncertainty in the sum of heights $q = x + y$?

$$q = x + y$$

$$S_q = \left| \frac{\partial q}{\partial x} \right| \cdot S_x + \left| \frac{\partial q}{\partial y} \right| \cdot S_y = S_x + S_y$$

$$q = (x + y) \pm (S_x + S_y)$$

14 January 2011
• e.g. Measure the heights x and y of two people

• What is the uncertainty in the sum of heights $q = x + y$?

$$q = x + y$$

$$S_q = \left| \frac{\partial q}{\partial x} \right| \cdot S_x + \left| \frac{\partial q}{\partial y} \right| \cdot S_y = S_x + S_y$$

$$q \pm (S_x + S_y)$$
Consider Two Cases:

- x and y have correlated errors (e.g. ruler is off)
- Expression above gives upper bound to errors

- x and y have uncorrelated errors
- Expression above overestimates error

$$q = (x + y) \pm (S_x + S_y)$$
How do we correctly treat functions of two (or more) variables?
Now, in the case where there are two independent variables and $q_i = q(x_i, y_i)$, we have

$$q_i \sim q(\bar{x}, \bar{y}) + \frac{\partial q}{\partial x}(x_i - \bar{x}) + \frac{\partial q}{\partial y}(y_i - \bar{y})$$

or, by noting that $\bar{q} = q(\bar{x}, \bar{y})$ (proof left as exercise), we get for the RMS of q

$$\sigma_q^2 = \frac{1}{N} \sum_{i=1}^{N} (q_i - \bar{q})^2$$

$$\sim \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial q}{\partial x}(x_i - \bar{x}) + \frac{\partial q}{\partial y}(y_i - \bar{y}) \right]^2$$

$$\sim \left(\frac{\partial q}{\partial x} \right)^2 \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 + \left(\frac{\partial q}{\partial y} \right)^2 \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 + \left(\frac{\partial q}{\partial x} \right) \left(\frac{\partial q}{\partial y} \right) \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$\sim \left(\frac{\partial q}{\partial x} \right)^2 \sigma_x^2 + \left(\frac{\partial q}{\partial y} \right)^2 \sigma_y^2 + \left(\frac{\partial q}{\partial x} \right) \left(\frac{\partial q}{\partial y} \right) \sigma_{xy}$$

where we have introduced a new term, the covariance of x and y:

$$\sigma_{xy} \equiv \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$
Now, in the case where there are two independent variables and \(q_i = q(x_i, y_i) \), we have

\[
q_i \sim q(\bar{x}, \bar{y}) + \frac{\partial q}{\partial x}(x_i - \bar{x}) + \frac{\partial q}{\partial y}(y_i - \bar{y})
\]

or, by noting that \(\bar{q} = q(\bar{x}, \bar{y}) \) (proof left as exercise), we get for the RMS of \(q \)

\[
\sigma_q^2 \equiv \frac{1}{N} \sum_{i=1}^{N} (q_i - \bar{q})^2
\]

\[
\approx \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial q}{\partial x}(x_i - \bar{x}) + \frac{\partial q}{\partial y}(y_i - \bar{y}) \right]^2
\]

\[
\approx \left(\frac{\partial q}{\partial x} \right)^2 \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 + \left(\frac{\partial q}{\partial y} \right)^2 \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 + \left(\frac{\partial q}{\partial x} \right) \left(\frac{\partial q}{\partial y} \right) \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})
\]

\[
\approx \left(\frac{\partial q}{\partial x} \right)^2 \sigma_x^2 + \left(\frac{\partial q}{\partial y} \right)^2 \sigma_y^2 + \left(\frac{\partial q}{\partial x} \right) \left(\frac{\partial q}{\partial y} \right) \sigma_{xy}
\]

where we have introduced a new term, the covariance of \(x \) and \(y \):

\[
\sigma_{xy} \equiv \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})
\]
Propagation of Uncertainty (neglecting correlations)

\[f = a + b \quad \rightarrow \quad \sigma_f = (\sigma_a^2 + \sigma_b^2)^{1/2} \]

\[f = a - b \quad \rightarrow \quad \sigma_f = (\sigma_a^2 + \sigma_b^2)^{1/2} \]

\[f = a \times b \quad \rightarrow \quad \frac{\sigma_f}{f} = \left(\left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b} \right)^2 \right)^{1/2} \]

\[f = a \div b \quad \rightarrow \quad \frac{\sigma_f}{f} = \left(\left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b} \right)^2 \right)^{1/2} \]

\[f = a^n \quad \rightarrow \quad \frac{\sigma_f}{f} = n \left(\frac{\sigma_a}{a} \right) \]
Propagation of Uncertainty (neglecting correlations)

\[f = a + b \quad \rightarrow \quad \sigma_f = (\sigma_a^2 + \sigma_b^2)^{1/2} \]

\[f = a - b \quad \rightarrow \quad \sigma_f = (\sigma_a^2 + \sigma_b^2)^{1/2} \]

\[f = a \times b \quad \rightarrow \quad \frac{\sigma_f}{f} = \left(\left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b} \right)^2 \right)^{1/2} \]

\[f = a \div b \quad \rightarrow \quad \frac{\sigma_f}{f} = \left(\left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b} \right)^2 \right)^{1/2} \]

\[f = a^n \quad \rightarrow \quad \frac{\sigma_f}{f} = n \left(\frac{\sigma_a}{a} \right) \]
Examples

- What if $f = a^n/b$?
- What if $f = a + be^c$?
EXAMPLE: Suppose we’re given the relation

\[F = \frac{ABC}{D + E} \]

where \(A, B, C, D, E \) are given by

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>28.0 ± 0.3</td>
</tr>
<tr>
<td>(B)</td>
<td>34.6 ± 3.5</td>
</tr>
<tr>
<td>(C)</td>
<td>12.2 ± 0.1</td>
</tr>
<tr>
<td>(D)</td>
<td>37.9 ± 0.4</td>
</tr>
<tr>
<td>(E)</td>
<td>40.1 ± 0.2</td>
</tr>
<tr>
<td>(F)</td>
<td>151.5 ± ???</td>
</tr>
</tbody>
</table>
EXAMPLE: Suppose we’re given the relation

\[F = \frac{ABC}{D + E} \]

where \(A, B, C, D, E \) are given by

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>28.0 ± 0.3</td>
</tr>
<tr>
<td>(B)</td>
<td>34.6 ± 3.5</td>
</tr>
<tr>
<td>(C)</td>
<td>12.2 ± 0.1</td>
</tr>
<tr>
<td>(D)</td>
<td>37.9 ± 0.4</td>
</tr>
<tr>
<td>(E)</td>
<td>40.1 ± 0.2</td>
</tr>
<tr>
<td>(F)</td>
<td>151.5 ± ???</td>
</tr>
</tbody>
</table>

• QUICK: What is uncertainty in \(F \)?
EXAMPLE: Suppose we’re given the relation

$$F = \frac{ABC}{D + E}$$

where A, B, C, D, E are given by

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28.0 ± 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>34.6 ± 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12.2 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>37.9 ± 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>40.1 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>151.5 ± ???</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **QUICK: What is uncertainty in F?**
- **B has 10% relative uncertainty**
EXAMPLE: Suppose we’re given the relation

\[F = \frac{ABC}{D + E} \]

where \(A, B, C, D, E \) are given by

\[
\begin{array}{c|c}
A & 28.0 \pm 0.3 \\
B & 34.6 \pm 3.5 \\
C & 12.2 \pm 0.1 \\
D & 37.9 \pm 0.4 \\
E & 40.1 \pm 0.2 \\
F & 151.5 \pm ??? \\
\end{array}
\]

- **QUICK**: What is uncertainty in \(F \)?
- **B** has 10% relative uncertainty
- All others have 1% or less
EXAMPLE: Suppose we’re given the relation

\[F = \frac{ABC}{D + E} \]

where \(A, B, C, D, E \) are given by

\[
\begin{array}{l|l}
A & 28.0 \pm 0.3 \\
B & 34.6 \pm 3.5 \\
C & 12.2 \pm 0.1 \\
D & 37.9 \pm 0.4 \\
E & 40.1 \pm 0.2 \\
F & 151.5 \pm ??? \\
\end{array}
\]

- **QUICK:** What is uncertainty in \(F \)?
- \(B \) has 10% relative uncertainty
- All others have 1% or less
- \(F \) has ~ same relative uncertainty as \(B \): \(S_F \sim 15 \)
Covariance:

\[\sigma_{xy} \equiv \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y}) \]
Additional Reading and Problems

• Read in **Taylor**:
 - Ch 3: Propagation of Uncertainties
 - Ch 4: Statistical Analysis of Random Uncertainties
 - Ch 9: Covariance and Correlation

• Try the problems:
 - Prove the relations on slide #15
 - 3.1, 3.2, 3.4, 3.15, 3.24
 - 4.6, 4.8, 4.19, 4.28
 - 9.2, 9.4, 9.8, 9.16