C++ Functions

```cpp
ftype fname (arguments)
{
    ...
    return [ftype];
}
```
Newton (or Newton-Raphson) Method for Finding Roots
Problem: given \(f(x) = 0 \), solve for \(x \).

Example: consider a balloon rising underwater, subject to the equation:

\[
 h(t) = t^2 - 4
\]

Make a guess that the time \(t_0 = 1 \) at which it reaches the surface. Expand the function in a Taylor series:

\[
 h(t) = h(t) + \Delta t h'(t)
\]

and at \(t = t_0 \) we have

\[
 0 = h(t_0) + \Delta t h'(t_0)
\]

Rearranging,

\[
 \Delta t = -\frac{h(t_0)}{h'(t_0)} = -\left(\frac{1 - 4}{2}\right) = 1.5
\]

We can now make successively better guesses as to the root of \(h(t) \) as follows:

\[
 t_1 = t_o + \Delta t = 2.5 \\
 t_2 = t_1 - \frac{h(t_1)}{h'(t_1)} = 2.05 \\
 \ldots \\
 t_{k+1} = t_k - \frac{h(t_k)}{h'(t_k)}
\]
Problem: given \(f(x) = 0 \), solve for \(x \).

Example: consider a balloon rising underwater, subject to the equation:

\[
h(t) = t^2 - 4
\]

Make a guess that the time \(t_0 = 1 \) at which it reaches the surface. Expand the function in a Taylor series:

\[
h(t) = h(t) + \Delta t h'(t)
\]

and at \(t = t_0 \) we have

\[
0 = h(t_0) + \Delta t h'(t_0)
\]

Rearranging,

\[
\Delta t = -\frac{h(t_0)}{h'(t_0)} = -\left(\frac{1 - 4}{2}\right) = 1.5
\]

We can now make successively better guesses as to the root of \(h(t) \) as follows:

\[
t_1 = t_o + \Delta t = 2.5
\]
\[
t_2 = t_1 - \frac{h(t_1)}{h'(t_1)} = 2.05
\]
\[
\vdots
\]
\[
t_{k+1} = t_k - \frac{h(t_k)}{h'(t_k)}
\]
Problem: given \(f(x) = 0 \), solve for \(x \).
Example: consider a balloon rising underwater, subject to the equation:

\[
h(t) = t^2 - 4
\]

Make a guess that the time \(t_0 = 1 \) at which it reaches the surface. Expand the function in a Taylor series:

\[
h(t) = h(t) + \Delta t h'(t)
\]

and at \(t = t_0 \) we have

\[
0 = h(t_0) + \Delta t h'(t_0)
\]

Rearranging,

\[
\Delta t = - \frac{h(t_0)}{h'(t_0)} = - \left(\frac{1 - 4}{2} \right) = 1.5
\]

We can now make successively better guesses as to the root of \(h(t) \) as follows:

\[
t_1 = t_0 + \Delta t = 2.5
\]

\[
t_2 = t_1 - \frac{h(t_1)}{h'(t_1)} = 2.05
\]

\[
\ldots
\]

\[
t_{k+1} = t_k - \frac{h(t_k)}{h'(t_k)}
\]