C++ Functions

ftype fname (arguments)
{
 ...
 return [ftype];
}

vtype vname...
Newton (or Newton-Raphson) Method for Finding Roots
Problem: given $f(x) = 0$, solve for x.

Example: consider a balloon rising underwater, subject to the equation:

$$h(t) = t^2 - 4$$

Make a guess t_0, for the time at which the balloon reaches the surface. Expand the function in a Taylor series about t_0:

$$h(t) = h(t_0) + (t - t_0) \cdot \frac{dh(t_0)}{dt} + \cdots$$

Keep only the first two terms. It is then straightforward to find the time t_1 at which this linear approximation to $h(t)$ equals zero:

$$h(t_0) + (t_1 - t_0) \cdot \frac{dh(t_0)}{dt} = 0$$

or, rearranging

$$t_1 = t_0 - \frac{h(t_0)}{dh(t_0)/dt}$$

t_1 is an improved guess as to the true zero of our initial function $h(t)$.

For our example, suppose we guess $t_0 = 1$. Then we have

$$t_1 = t_0 - \frac{h(t_0)}{dh(t_0)/dt} = 1 - \frac{(1 - 4)}{2} = 2.5$$

which is closer to the true root of $h(t)$ than t_0. Iterating this procedure, we can make successively better guesses as to the root of $h(t)$ as follows:

$$t_2 = t_1 - \frac{h(t_1)}{dh(t_1)/dt} = 2.05$$

$$t_3 = t_2 - \frac{h(t_2)}{dh(t_2)/dt} = 2.000609756$$

$$\cdots$$

$$t_{k+1} = t_k - \frac{h(t_k)}{h'(t_k)}$$
Problem: given \(f(x) = 0 \), solve for \(x \).

Example: consider a balloon rising underwater, subject to the equation:

\[
h(t) = t^2 - 4
\]

Make a guess \(t_0 \), for the time at which the balloon reaches the surface. Expand the function in a Taylor series about \(t_0 \):

\[
h(t) = h(t_0) + (t - t_0) \cdot \frac{dh(t_0)}{dt} + \cdots
\]

Keep only the first two terms. It is then straightforward to find the time \(t_1 \) at which this linear approximation to \(h(t) \) equals zero:

\[
h(t_0) + (t_1 - t_0) \cdot \frac{dh(t_0)}{dt} = 0
\]

or, rearranging

\[
t_1 = t_0 - \frac{h(t_0)}{dh(t_0)/dt}
\]

\(t_1 \) is an improved guess as to the true zero of our initial function \(h(t) \).

For our example, suppose we guess \(t_0 = 1 \). Then we have

\[
t_1 = t_0 - \frac{h(t_0)}{dh(t_0)/dt} = 1 - \frac{(1 - 4)}{2} = 2.5
\]

which is closer to the true root of \(h(t) \) than \(t_0 \). Iterating this procedure, we can make successively better guesses as to the root of \(h(t) \) as follows:

\[
t_2 = t_1 - \frac{h(t_1)}{dh(t_1)/dt} = 2.05
\]

\[
t_3 = t_2 - \frac{h(t_2)}{dh(t_2)/dt} = 2.000609756
\]

\[
\vdots
\]

\[
t_{k+1} = t_k - \frac{h(t_k)}{h'(t_k)}
\]
Problem: given \(f(x) = 0 \), solve for \(x \).

Example: consider a balloon rising underwater, subject to the equation:

\[
h(t) = t^2 - 4
\]

Make a guess \(t_0 \), for the time at which the balloon reaches the surface. Expand the function in a Taylor series about \(t_0 \):

\[
h(t) = h(t_0) + (t - t_0) \cdot \frac{dh(t_0)}{dt} + \ldots
\]

Keep only the first two terms. It is then straightforward to find the time \(t_1 \) at which this linear approximation to \(h(t) \) equals zero:

\[
h(t_0) + (t_1 - t_0) \cdot \frac{dh(t_0)}{dt} = 0
\]

or, rearranging

\[
t_1 = t_0 - \frac{h(t_0)}{dh(t_0)/dt}
\]

\(t_1 \) is an improved guess as to the true zero of our initial function \(h(t) \).

For our example, suppose we guess \(t_0 = 1 \). Then we have

\[
t_1 = t_0 - \frac{h(t_0)}{dh(t_0)/dt} = 1 - \frac{(1 - 4)}{2} = 2.5
\]

which is closer to the true root of \(h(t) \) than \(t_0 \). Iterating this procedure, we can make successively better guesses as to the root of \(h(t) \) as follows:

\[
t_2 = t_1 - \frac{h(t_1)}{dh(t_1)/dt} = 2.05
\]

\[
t_3 = t_2 - \frac{h(t_2)}{dh(t_2)/dt} = 2.000609756
\]

\[\ldots\]

\[
t_{k+1} = t_k - \frac{h(t_k)}{h'(t_k)}
\]