Lecture 18: Maximum Likelihood Fitting

\[L(\lambda | t_1, t_2, \ldots, t_n) = \prod_{i=1}^{n} f(t_i) \]

\[= \prod_{i=1}^{n} \lambda e^{-\lambda t_i} \]

\[= \lambda^n \cdot e^{-\lambda \sum_{i=1}^{N} t_i} \]
Before Spring Break...

• Introduction to “fitting”
• Compare data ↔ physical model
• χ^2 minimization
 – Gaussian-distributed uncertainties
 \[
 \chi^2 = \sum_{i=1}^{n} \frac{(f(x_i) - y_i)^2}{\sigma^2_{y_i}}
 \]
 – Best fit parameters are those that minimize this function
 – Many ways to get there!
A07: Linearization

- We know how to do linear least-squares fitting (fit.cpp)
- But our function isn't a straight line:

\[F(v) = C v^\beta \]
A07: Linearization

- Its easy to linearize the model:

\[F(v) = C v^\beta \]

\[\ln F = \ln C v^\beta \]

\[= \ln C + \beta \ln v \]
A07: Linearization

- What about error bars?
- Use standard error propagation equation:

\[\xi = \ln F \]

\[\sigma_\xi = \left(\frac{d\xi}{dF} \right) \sigma_F = \frac{\sigma_F}{F} \]
Comments on Fit Output

Ignoring standard deviations

\[a = 114.281062 \quad \text{uncertainty: 10.787334} \]
\[b = 31.476746 \quad \text{uncertainty: 1.000535} \]
\[\text{chi-squared: } 4052.544699 \]
\[\text{goodness-of-fit: } 1.000000 \]

Including standard deviations

\[a = 119.496706 \quad \text{uncertainty: 7.567595} \]
\[b = 30.697872 \quad \text{uncertainty: 1.034080} \]
\[\text{chi-squared: } 10.946476 \]
\[\text{goodness-of-fit: } 0.204750 \]
Maximum Likelihood Method
\(\chi^2 \) method requires Gaussian Uncertainty

- Simplest case: straight line fit to data with *normally distributed* (Gaussian) uncertainties.

- What does this mean?
 - Measure quantity \(x \), \(N \) times.
 - As \(N \to \text{large} \), parent probability distribution \(\to \) Gaussian

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-x_0)^2}{2\sigma^2}}
\]
What if uncertainties Non-Gaussian?

- “Maximum Likelihood Method”
 - Unbinned fitting technique
 - χ^2 method is actually special case of MLM

- Define the “Likelihood Function”

\[
\mathcal{L}(a_1, a_2, \ldots, a_m) = \prod_{i=1}^{N} P_i(x_i; a_1, a_2, \ldots, a_m)
\]
What if uncertainties Non-Gaussian?

- “Maximum Likelihood Method”
 - Unbinned fitting technique
 - χ^2 method is actually special case of MLM

- Define the “Likelihood Function”

$$
\mathcal{L}(a_1, a_2, \ldots, a_m) = \prod_{i=1}^{N} P_i(x_i; a_1, a_2, \ldots, a_m)
$$

- Number of measurements
- Quantity being measured
- Product
- Probability density function evaluated for i^{th} data point
- Fit parameters
Example: Muon Decay

- Elementary particles exhibit exponential decay.
- τ is “mean lifetime” of the particle.
- How do we extract τ?
\(\chi^2 \) method:

- Sort lifetimes of individual particles into bins of width \(\Delta t \).
- Assign \(\sqrt{n} \) uncertainty to the contents of each bin.
\(\chi^2 \) method:

- Sort lifetimes of individual particles into bins of width \(\Delta t \).
- Assign \(\sqrt{n} \) uncertainty to the contents of each bin.
- Linearize (take log)
- Find \(\tau \) which minimizes \(\chi^2 \).
\(\chi^2 \) method:

- Sort lifetimes of individual particles into bins of width \(\Delta t \).
- Assign \(\sqrt{n} \) uncertainty to the contents of each bin.
- Linearize (take log)
- Find \(\tau \) which minimizes \(\chi^2 \).
- Any potential problems?
Muon Decay: Likelihood method

For muon decay...

\[P_i = A e^{-t_i/\tau} \]

where \(A \) is a normalization constant subject to

\[
\int_{t_1}^{t_2} P_i dt_i = A \int_{t_1}^{t_2} e^{-t_i/\tau} dt_i = 1
\]

If \(t_1 = 0, \ t_2 = \infty, \)

\[A = \frac{1}{\tau} \]

otherwise

\[A = \frac{1}{\tau \left[e^{-t_1/\tau} - e^{-t_2/\tau} \right]} \]
Muon Decay: Likelihood method

- Practically speaking, since the $P_i < 1$, L can be very small.

- More commonly what is maximized is the log of the likelihood function...

$$\mathcal{M} = \ln \mathcal{L}$$

$$= \ln \left[\prod_{i=1}^{N} (A e^{-t_i/\tau}) \right]$$

$$= \sum_{i=1}^{N} \left[\ln A - \frac{t_i}{\tau} \right]$$
Wrap-up

• Today's lab: Apply grid-search method to find value of parameter τ which maximizes log-likelihood.

• Uncertainties: What change in τ changes M by 1/2?

• Goodness of fit (disadvantage of direct ML method): Requires other methods, e.g. large simulated (Monte Carlo) data sets to derive!