From Dr. Srivastava: In this talk, I will begin by presenting our recent results on valley Zeeman effect, where in analogy to spins, valves shift in energy with magnetic field. Next, I will discuss our theoretical results on how the non-trivial geometry of Bloch bands modifies the excitonic fine structure of TMDs resulting in an orbital Zeeman effect in reciprocal space and a Lamb-like shift of levels. Finally, I will present our recent results on the observation of microcavity polaritons confirming the strong light-matter interactions in these materials. The presence of valley degree of freedom, non-trivial geometry of bands, and the possibility of introducing non-linearities in form of quantum emitters makes polaritons in TMDs particularly appealing for studying correlated many-body physics and topological states of matter.