As the limitations of electrical circuitry are reached, new paradigms are needed to develop future generations of fast and reduced energy dissipation (less lossy) miniature information processing devices. Nearly all existing electronic devices are based on controlling the electric charge by electric fields. Electrons also possess a “spin” that gives them their magnetic properties. Spin density fluctuations in magnetically ordered materials such as ferromagnetic metals and insulators can propagate in the form of spin waves, i.e., quantized by magnons. Magnons are considered as a potential data carrier in information storage and transport, known as Magnonics. Magnonics is less prone of the inherent weakness of conventional electronics, i.e., Joule heating. Up to now, magnetic insulator, such as yttrium iron garnet (YIG), has been the main candidate for magnonic devices, which can transfer information over macroscopic distance due to its low Gilbert damping. However, YIG films used for magnonics are difficult to grow and integrate into device structures, since they are epitaxially grown as single crystals at very high temperature. Here we report an alternative candidate for magnonic devices, namely organic magnetic compounds. Attempts to measure magnons in an organic based magnet will be discussed.