Differential cross section of hard sphere collisions

Beads of negligible size are shot at a sample of thickness x modeled as an amorphous collection (distributed with a volume density n) of hard spheres of radius R. When a collision takes place, the bead bounces off the sphere with an angle of emission equal to its angle of incidence β on the sphere surface, such that it is deflected by a scattering angle $\theta = \pi - 2\beta$. Since the spheres are much more massive than the beads, we may neglect their recoil.

(a) Without doing any calculations, what is the cross section σ_{Tot} for the bead to be deflected by any non-zero angle? Explain.

(b) What is the cross section $\sigma_{2\pi/3}$ for the shot to be deflected by more than $2\pi/3$?

(c) Establish the relation between the impact parameter b and the scattering angle θ for a collision of a bead with one of the hard spheres.

(d) Establish the cross section $\frac{d\sigma}{d\Omega}(\theta)$ for the bead to be deflected by an angle θ.

(e) Check that your answers to questions (a) and (b) can be reproduced by performing an integration of your answer to question (d).

(f) A beam of beads with a cross section area A and a flux density J is aimed at the target. Express the rate at which beads will be observed to be scattered between angles θ_1 and θ_2.

(g) Estimate the maximal number density n_{Max} for your calculation to be in relative error smaller than ϵ (Hint: A scattered bead has a non zero chance to scatter again in the sample before emerging. I am looking for an estimate only so do not worry about the beads scattered at an angle θ close to $\pi/2$).
[2] Maximal energy transfer
Consider a particle of mass M and momentum p which scatters off a particle of mass m initially at rest in the laboratory frame. Establish the maximum energy transfer T_{Max} between the particles in terms of their masses and in terms of the velocity β_0 and Lorentz factor γ_0 of the incident particle in the laboratory frame.

Using Bethe’s formula, estimate the thickness a slab of steel need to have to stop muons μ^- of energy 13 GeV.

[4] Photo-multiplier tube
A photo multiplier with a quantum efficiency of 15% is operated with a gain of 3×10^6. The output of the photomultiplier drives a 50 Ω resistor. The voltage across the resistor is displayed by an oscilloscope. An individual photo electron is observed to produce a pulse of width 5 ns

(a) Estimate the single photo electron pulse amplitude displayed on the oscilloscope.

(b) When the photomultiplier is exposed to a constant source of light, a DC voltage $V = 12$ mV appears on the oscilloscope. Estimate the number of photons reaching the photocathode per unit time.

[5] Chance probability for a photon to make it through the atmosphere
Estimate the chance probability for an astrophysical 100 MeV gamma ray to reach the top of the mountain with a vertical incidence without interacting in the atmosphere. How would your result change for an incidence 60° from vertical? Consider the atmospheric pressure at the mountain top to be 60 kPa and the atmosphere composed of Nitrogen 80% and Oxygen 20%.

[6] Paraffin as a neutron shield
Paraffin $C_n H_{2n+2}$ have a mass density $\rho = 900$ kgm$^{-3}$. It is a hydrogen rich material which is effectively used as a shield against neutrons. Estimate the thickness of paraffin needed to attenuate a neutron beam by a factor 100.