Electron gas in two dimensions

We consider a two dimensional gas of electrons of mass \(m \) with \(N \) electrons confined to an area \(A \) so there is a density \(n = N/A \) of electrons per unit area.

(a) Express the Fermi wave vector magnitude \(k_F \) and the Fermi energy \(E_F \) in terms of \(n \)

\[k_F = \sqrt{\frac{3\pi n}{\hbar^2}} \quad \text{and} \quad E_F = \frac{k_F^2}{2m} = \frac{\pi^2 k_F^2 n}{m} \]

(b) Express the density of levels \(g(E) \)

One way to do this is to write the density of states for the system at \(T = 0 \) and make the expression take the form:

\[E = \frac{A}{\pi} \int_0^{E_F} g(E) \, dE \]

We can start from:

\[E = \frac{A}{\pi} \int_0^{E_F} \frac{1}{2m} \frac{\hbar^2 k^2}{2m} \, dk \]

and with \(k = \frac{\sqrt{2mE}}{\hbar} \), \(\frac{dk}{dE} = \frac{\sqrt{2mE}}{\hbar} \)

\[E = \frac{A}{\pi} \int_0^{E_F} \frac{m}{\hbar^2} E \, dE \]

The above approach is ok here because we are considering a very simple form of \(E(k) \). A more robust approach is to go back to the definition of \(g(E) \): It is the density of states per unit volume (area here) per interval of energy:

\[g(E) = \frac{A}{\pi} \int_0^\infty \frac{k}{2m} \, dk \, \delta\left(E - \frac{k^2}{2m}\right) = \frac{4}{\pi} \int_0^\infty \frac{k}{2m} \, \delta\left(k - \sqrt{2mE/k}\right) = \frac{m}{\pi \hbar^2} \]

The properties of Dirac distribution:

\[\int_0^\infty \delta(x) \frac{f(x-a)}{|f'(a)|} = 1 \]

Both approaches give the same result \(g(E) = \frac{m}{\pi \hbar^2} \) which is independent of the energy.

(c) Write the Sommerfeld expansion for \(n \) and conclude as to the relation between the chemical potential \(\mu \) and the Fermi energy \(E_F \)

At finite temperature, \(n = \int_0^{E_F} g(E) f(E, \mu) \) with \(f(E) = \frac{1}{e^{E/kT} + 1} \)

We can apply Sommerfeld's expansion:

\[n \approx \int_0^{\mu} \frac{g(E) \, dE}{e^{E/kT}} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \left(\frac{kT}{\hbar} \right)^n \frac{\partial^n g(E)}{\partial E^n} \bigg|_{E=0} \]

but we just found that \(g(E) \) does not depend on \(E \), so \(\frac{\partial^n g(E)}{\partial E^n} = 0 \) and \(n = \frac{\mu}{kT} \frac{\partial g(E)}{\partial E} \bigg|_{E=0} \)

From \(T = 0 \) consideration, we also know that \(n = \int_0^{E_F} \frac{dE}{\pi \hbar^2} = \frac{\pi \hbar^2}{E_F} \)

These two result imply \(\mu = E_F \)
(d) Obtain a relation between μ and E_F directly from the relation $n = \int_{-\infty}^{\infty} dE g(E) f(E)$ where $f(E)$ is the Fermi-Dirac occupation factor (Hint: proceed with the change of variable $x = e^{-(E-\mu)/k_B T}$). Write your result to the limit $k_B T \ll E_F$.

Proceeding as suggested, $n = \frac{m}{\pi h^2} \int_{0}^{\infty} dx \frac{1}{e^{x/k_B T} + 1}$ with the variable change $x = \frac{E-\mu}{k_B T}$, $dx = -\frac{1}{k_B T} dx$.

$$n = \frac{m}{\pi h^2} k_B T \int_0^{\infty} \frac{dx}{x} \frac{1}{e^{x/k_B T} + 1} = \frac{m}{\pi h^2} k_B T \int_0^{1/k_B T} \frac{dx}{x} \frac{1}{1 + e^{x/k_B T}}$$

Earlier we established $E_F = \frac{\pi^2 k_B T}{m} \Rightarrow E_F = k_B T \ln(1 + e^{\mu/k_B T})$.

Going to the low temperature limit, one might be tempted to do $1 + e^{\mu/k_B T}$ which leads to $E_F = \mu$ again so this is not good enough. Instead, we can write $E_F = k_B T \ln \left(e^{\mu/k_B T} (e^{\mu/k_B T} + 1) \right) = \mu + k_B T \ln \left(1 + e^{\mu/k_B T} \right)$ and, to the limit $k_B T \ll \mu$, $E_F = \mu + k_B T e^{\mu/k_B T}$ so there is a difference but it is a very small one as $k_B T \ll \mu$ and $e^{\mu/k_B T} \ll 1$.

(e) Comment on the difference between your answers to question (c) and (d).

The Sommerfeld expansion is a Taylor expansion in powers of $k_B T$ around $k_B T = 0$. It simply fails to describe the term $k_B T e^{\mu/k_B T}$ which goes to zero in a non-analytic way as the successive derivatives of $f(x) = x e^{x/k_B T}$ all evaluate to 0 in $x = 0$. (you should try, it is kind of fun)