Panoply of orders near quantum Lifshitz point of a frustrated ferromagnet

Oleg Starykh
University of Utah

Life at (and near) University of Utah
Collaborators

Leon Balents, KITP, UCSB

Andrey Chubukov, FTPI, U Minnesota

Jason Alicea, Caltech
General motivation: *Exotic* but ordered phases

ordered phases

spin nematic

hidden order

quantum spin liquids

composite order parameter

\[O^{\alpha \beta}(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{2} (S_i^\alpha S_j^\beta + S_i^\beta S_j^\alpha) - \frac{1}{3} \delta^{\alpha \beta} \langle S_i \cdot S_j \rangle \]
Quantum magnetism vs Spintronics

Spin is almost conserved

- No dipolar coupling (small magnetic moments)
 Notable exception —> spin ice

- No coupling to phonons (basically isolated system of spins)
 Notable exception —> hybridization of magnons and phonons in non-collinear spin structures

Spin transport —> mostly thermal
1) heat transport in chains/ladders
2) thermal transport in organic spin liquid candidate materials (spinon Fermi surface?)
3) magnon Hall effect (due to DM interactions)

Magnetic Coulomb Phase in the Spin Ice
Ho$_2$Ti$_2$O$_7$
Science 2009
T. Fennell1,2, P. P. Deen1, A. R. Wildes1, K. Schmalzl3, D. Prabhakaran1, A. T. Boothroyd1, R. J. Aldus4, D. F. McMorrow4, S. T. Bramwell4

Spontaneous decays of magneto-elastic excitations in noncollinear antiferromagnet (Y$_x$Lu)$_2$MnO$_3$
Joosung Oh1,2, Manh Duc Le1,2, Ho-Hyun Nahm1,2, Hasung Sim1,2, Jaeong Jeong1,2, T. G. Perring3, Hyungie Woo1,2, Kenji Nakajima1, Seiko Ohira-Kawamura1, Zohra Yamani1, Y. Yoshida1, H. Eisaki1, S.-W. Cheong1, A. L. Chernyshev1, and Je-Geun Park1,2

arxiv:1609.03262

Observation of the Magnon Hall Effect
Y. Onose1,2,*, T. Ideue1, H. Katsura3, Y. Shiomi1,2,4, N. Nagaosa1,4, Y. Tokura1,2,4
+ Author Affiliations
* To whom correspondence should be addressed. E-mail: onose@ap.t.u-tokyo.ac.jp
Science 16 Jul 2010;
Vol. 329, Issue 5989, pp. 297-299
DOI: 10.1126/science.1188260
Quantum magnetism vs Spintronics

Spin is almost conserved

- No dipolar coupling (small magnetic moments)
 Notable exception —> spin ice

- No coupling to phonons (basically isolated system of spins)
 Notable exception —> hybridization of magnons and phonons in **non-collinear** spin structures

- Spin transport —> mostly **thermal**
 1) heat transport in chains/ladders

Magnetic Coulomb Phase in the Spin Ice

\(\text{Ho}_2\text{Ti}_2\text{O}_7 \)

Science 2009

T. Fennell\(^1\), P. P. Deen\(^1\), A. R. Wildes\(^1\), K. Schmalzl\(^1\), D. Prabhakaran\(^2\), A. T. Boothroyd\(^2\), R. J. Aldus\(^3\), D. F. McMorrow\(^4\), S. T. Bramwell\(^4\)

Spontaneous decays of magneto-elastic excitations in noncollinear antiferromagnet \((\text{Y},\text{Lu})\text{MnO}_3\)

Joosung Oh\(^1\), Manh Duc Le\(^1\), Ho-Hyun Nahm\(^1\), Hasung Sim\(^1\), Jaeheong Jeong\(^1\), T. G. Perring\(^1\), Hyungie Woo\(^1\), Kenji Nakajima\(^1\), Seiko Ohira-Kawamura\(^1\), Zahra Yamani\(^1\), Y. Yoshida\(^1\), H. Eisaki\(^1\), S.-W. Cheong\(^1\), A. L. Chernyshev\(^1\), and Je-Geun Park\(^1\)

Observation of spin current in quantum spin liquid

Daichi Hirobe, Masahiro Sato, Takayuki Kawamata, Yuki Shiomi, Ken-ichi Uchida, Ryo Iguchi, Yoji Koike, Sadamichi Maekawa, Eiji Saitoh

(Submitted on 21 Sep 2016)

Spin liquid is a state of electron spins in which quantum fluctuation breaks magnetic ordering while maintaining spin correlation. It has been a central topic in magnetism because of its relevance to high-T\(_c\) superconductivity and topological states. However, utilizing spin liquid has been quite difficult. Typical spin liquid states are realized in one-dimensional spin systems, called quantum spin chains. Here, we show that a spin liquid in a spin-1/2 quantum chain generates and carries spin current via its long-range spin fluctuation. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in \(\text{Sr}_2\text{CuO}_3 \). The results show that spin current can flow even in an atomic channel owing the spin liquid state, which can be used for atomic spin–current wiring.
Outline

- Magnon BEC
- Materials
 - Basic theory and some numerics
 - *Field theory of the Lifshitz point*
 - *Spin-current state* near the end-point of $1/3$ magnetization plateau
Magnon BEC and superfluidity

frustration shows up via presence of two or more degenerate minima where condensation is possible

\[\omega \sim (k^2 - Q^2)^2 - (h_{\text{sat}} - h) \]
\[h_{\text{sat}} = \frac{S(4J_2 - |J_1|)^2}{4J_2} \]

Condensation at one of the two minima \(\rightarrow U(1) \times Z_2 \)

\[\langle a_k^+ \rangle = \sqrt{N} \Psi_Q \delta_{k,Q} \]
\[\langle S_n^- \rangle \sim \Psi_Q e^{iQx_n} \]

FIG. 3. A single triangular layer of the cone state, illustrated for a field along the \(a \) axis. Circles with arrows indicate the sense of precession of the spins, as one moves along the \(x \) axis. This is most
Magnon BEC and superfluidity

frustration shows up via presence of two or more
degenerate minima where condensation is possible

1-magnon

Single magnon condensation at both minima $\rightarrow U(1)$

E_{min} (supersolid)

$S^z = -1$

$\langle a_k \rangle = \sqrt{N}\psi_+ \delta_{k,Q} + \sqrt{N}\psi_- \delta_{k,-Q}$

$\langle S^-(x) \rangle = |\psi|e^{i\phi^+} \cos[Q \cdot r + \phi^-]$ $\langle S^z(x) \rangle = S - |\psi|^2 \cos^2[Q \cdot r + \phi^-]$
The difference is not small — the entire magnetization $M(h)$ of the triangular lattice antiferromagnet is determined by quantum fluctuations.

\[\frac{E}{N} = -S \mu (\rho_1 + \rho_2) + \frac{1}{2} \Gamma_1 (\rho_1^2 + \rho_2^2) + \Gamma_2 \rho_1 \rho_2. \]
magnon superconductor

Today: condensation of magnon pairs

Formation of molecular fluid: for $d>1$ at $T=0$ this is a molecular BEC = true spin nematic (magnon superconductor)
Hidden order

No dipolar order

\[S^z = 1 \text{ gap} \]

\[\langle S_n^- \rangle = 0 \]

\[\langle S_i^+ S_j^- \rangle \sim e^{-|i-j|/\xi} \]

Nematic order

\[\langle S_n^- S_{n+a}^- \rangle = \Phi \neq 0 \]

\[\langle S_n^- S_m^- \rangle = \langle S_n^x S_m^x - S_n^y S_m^y - i(S_n^x S_m^y + S_n^y S_m^x) \rangle \sim \sin^2 \theta (\cos 2\varphi - i \sin 2\varphi) \]

Magnetic quadrupole moment

think of a fluctuating fan state:

\[\varphi \text{ is constant, while } \theta \text{ fluctuates (in time)} \]

in the interval \((\theta_0, -\theta_0)\)
Outline

- Magnon BEC
- Materials
 - Basic theory and some numerics
 - Field theory of the Lifshitz point
 - Spin-current state near the end-point of 1/3 magnetization plateau
New system: Frustrated ferromagnet

1d S=1/2 chain

\[H = J_1 \sum_{i} S_i \cdot S_{i+1} + J_2 \sum_{i} S_i \cdot S_{i+2} - h \sum_{i} S_i^z \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>(J_1) (K)</th>
<th>(J_2) (K)</th>
<th>(\angle \text{Cu-O-Cu}) (deg)</th>
<th>(T_N) (K)</th>
<th>(H_s) (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li}_2\text{ZrCuO}_4)[12, 13]</td>
<td>-151, 35</td>
<td>94.1</td>
<td>6.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\text{Rb}_2\text{Cu}_2\text{Mo}3\text{O}{12})[14, 15]</td>
<td>-138, 51</td>
<td>89.9, 101.8</td>
<td>< 2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>(\text{PbCuSO}_4(\text{OH})_2)[16–18]</td>
<td>-100, 36</td>
<td>91.2, 94.3</td>
<td>2.8</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>(\text{LiCuSbO}_4)[19]</td>
<td>-75, 34</td>
<td>89.8, 95.0</td>
<td>< 0.1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>(\text{LiCu}_2\text{O}_2)[20–22]</td>
<td>-69, 43</td>
<td>92.2, 92.5</td>
<td>22.3</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>(\text{LiCuVO}_4)[23–31]</td>
<td>-19, 44</td>
<td>95.0</td>
<td>2.1</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td>(\text{NaCuMoO}_4(\text{OH}))</td>
<td>-51, 36</td>
<td>92.0, 103.6</td>
<td>0.59</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

\(\beta - \text{TeVO}_4 \)

Pregelj et al., Nat.Comm.2015

K. Nawa et al, arXiv:1409.1310
multi-polar states with $9 \geq p \geq 2$
LiCuVO$_4$: spin nematic?

\[
H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - h \sum_i S^z_i
\]

+ weak interchain coupling J_5...

\[
\begin{align*}
J_1 &= -1.6 \text{ meV} \\
J_2 &= 3.9 \text{ meV} \\
J_5 &= -0.4 \text{ meV}
\end{align*}
\]
LiCuVO$_4$ experiment: collinear SDW along \mathbf{B}

Hagiwara, Svistov et al, 2011

Buttgen et al 2012, 2014

FIG. 2. Field dependence of the incommensurate wave vector k_{ic} for applied magnetic fields $\mathbf{H} \parallel \mathbf{c}$ in LiCuVO$_4$. The open symbols
Evidence of a Bond Nematic Phase in LiCuVO$_4$

M. Mourigal,1,2 M. Enderle,1 B. Fåk,3 R. K. Kremer,4 J. M. Law,4,* A. Schneidewind,5 A. Hiess,1,† and A. Prokofiev6,7

No spin-flip scattering above ~ 9 Tesla: **longitudinal SDW state**

SF = spin flip, $\Delta S = 1$
NSF = no spin flip, $\Delta S = 0$

FIG. 3 (color online). Polarized cross sections measured at $T = 70$ mK for the magnetic reflections $Q = (1, k_{1C}, 0)$ with $H \| c$ [left panels, (a)–(c)] and $Q = (0, -k_{1C}, 1)$ with $H \| a$ [right panels, (d)–(f)].
Cold reality

"Our results suggest that the theoretically predicted spin-nematic phase, if it exists in LiCuVO$_4$, can be established only within the narrow field range 40.5 < H < 41.4 T."

- so far, extensive experimental evidence for longitudinal SDW
- Spin Nematic phase is constrained to field interval < 1 T right below the saturation field (of the order 40 T)
Huge 1/3 magnetization plateau!
Phase diagram

1/3 plateau

N?

SDW

small plateau’s onset field of 27 Tesla, relative to $J \sim 100$ K, suggest the presence of ferromagnetic exchange interactions

H. Ishikawa et al, PRL 2015
Outline

- Magnon BEC
- Materials
 - Basic theory and some numerics
 - Field theory of the Lifshitz point
 - Spin-current state near the end-point of 1/3 magnetization plateau
Frustrated ferromagnet

1d S=1/2 chain

\[H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - h \sum_i S_i^z \]

FM

PM

\[\frac{J_2}{(|J_1|+J_2)} \]

J₁<0 FM

J₂>0 AF

1/5

0

1
Frustrated ferromagnet

\[J_2 \geq 0 \text{ AF} \]

\[J_1 < 0 \text{ FM} \]

\[H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - \mu S^z_i \]

1d \(S = 1/2 \) chain

\[
\begin{align*}
\omega &\sim \frac{1}{k_x} \left(J_2 - \frac{1}{2} |J_1| \right) k_z \\
\omega &\sim \frac{1}{k_x} |J_1| k_z \\
\omega &\sim \frac{1}{k_x} \left(4J_2 - |J_1| \right) \frac{1}{3} k_z
\end{align*}
\]

\(z = 1, 2, 4 \)

spin-wave dispersion

(1/5 - 1/2) \(J_2/(J_1+J_2) \)

Frustrated ferromagnet

\(\text{FM} \)

\(\text{PM} \)

\(1 \)

\(0 \)

\(M \)
Approaching from fully polarized state — Multipolar phases

\[J_2 / (|J_1| + J_2) \]

\[H / (|J_1| + J_2) \]

Phases with bound complexes made out of \(p \) magnons

Lifshitz point

\[J_2 = |J_1| / 4 \]

Hikihara et al., 2008
Sudan et al., 2009

\[\omega \sim (k^2 - Q^2)^2 - (h_{\text{sat}} - h) \]
Spin chain numerics

Frustrated ferromagnetic spin-$\frac{1}{2}$ chain in a magnetic field:
The phase diagram and thermodynamic properties

F. Heidrich-Meisner, 1,2 A. Honecker, 3,4 and T. Vekua 5,6

We compute the ground-state energies $E_0(S_{\text{total}}^c, h=0)$ in subspaces labeled by S_{total}^c on chains with periodic boundary conditions (PBC) using the Lanczos algorithm. The ground-state energies of substantially larger chains with open boundary conditions (OBC) are calculated with DMRG. Typically, we keep up to $m=400$ states in our DMRG calculations.

Then, we include the Zeeman term and obtain the field-dependent ground-state energies

$$E_0(S_{\text{total}}^c, h) = E_0(S_{\text{total}}^c, h=0) - h S_{\text{total}}^c.$$ (4)

The magnetization curves are constructed by solving the equations $E_0(S_{\text{total}}^c, h_{\text{step}}) = E_0(S_{\text{total}}^c + s, h_{\text{step}})$, which define those magnetic fields at which the magnetization increases from $M = S_{\text{total}}^c/(NS)$ to $M' = (S_{\text{total}}^c + s)/(NS)$. Steps larger than $s=1$ may occur.

s = 1/2

FIG. 1: (Color online) (a), main panel (inset): Magnetization curve $M(h)$ for $J_1 = -J_2$ ($J_1 = -2.5 J_2$). The horizontal dotted line marks $M = 1/3$. (b): $M(h)$ for $J_1 = -3 J_2$. (c): Magnetic phase diagram of the frustrated FM chain. The dotted line (with stars) marks the first-order transition between the EO phase and the $\Delta S_z = 1$ region, while the line $h = h_1$ (dashed, triangles) separates the $\Delta S_z = 1$ region from the $\Delta S_z \geq 3$ part. Uncertainties of the transition lines, e.g. due
Vector chiral and multipolar orders in the spin-$\frac{1}{2}$ frustrated ferromagnetic chain in magnetic field

Toshiya Hikihara, Lars Kecke, Tsutomu Momoi, and Akira Furusaki

\[s = \frac{1}{2} \]

TABLE I. Number of magnons p and total momentum k of the multimagnon bound states which become gapless at the saturation field.

<table>
<thead>
<tr>
<th>Parameter range</th>
<th>p</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.669 < J_1/J_2 < 0$</td>
<td>2</td>
<td>π</td>
</tr>
<tr>
<td>$-2.720 < J_1/J_2 < -2.669$</td>
<td>2</td>
<td>$\pi \pm \delta$ ($\delta > 0$)</td>
</tr>
<tr>
<td>$-3.514 < J_1/J_2 < -2.720$</td>
<td>3</td>
<td>π</td>
</tr>
<tr>
<td>$-3.764 < J_1/J_2 < -3.514$</td>
<td>4</td>
<td>π</td>
</tr>
<tr>
<td>$-3.888 < J_1/J_2 < -3.764$</td>
<td>5</td>
<td>π</td>
</tr>
<tr>
<td>$-3.917 < J_1/J_2 < -3.888$</td>
<td>6</td>
<td>π</td>
</tr>
<tr>
<td>$-4 < J_1/J_2 < -3.917$</td>
<td>7</td>
<td>π</td>
</tr>
</tbody>
</table>

FIG. 9. Magnetization curves for (a) $J_1/J_2 = -2.0$, (b) $J_1/J_2 = -2.4$, (c) $J_1/J_2 = -2.5$, (d) $J_1/J_2 = -3.0$, (e) $J_1/J_2 = -3.4$, and (f) $J_1/J_2 = -3.6$. The dotted lines represent the boundaries of the regions of $\Delta S^z_{\text{tot}} = 1$ and $\Delta S^z_{\text{tot}} \geq 2$.

Numerics: nematicity and 1st order seem connected?

1d frustrated chain

2d frustrated square lattice

1st order

2nd order

Sudan et al, 2009

Shannon, Momoi, Sindzingre PRL 2006
Outline

- Magnon BEC
- Materials
- Basic theory and some numerics
- Field theory of the Lifshitz point
- Spin-current state near the end-point of 1/3 magnetization plateau
Lifshitz Point

Balents, Starykh PRL 2016

- Unusual QCP: order-to-order transition
- Effective action - NLσM for unit vector \mathbf{m}

$$S = \int dx d\tau \left\{ i s A_B [\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$$

$$A_B = \frac{\hat{m}_1 \partial_\tau \hat{m}_2 - \hat{m}_2 \partial_\tau \hat{m}_1}{1 + \hat{m}_3}$$

Berry phase tune two symmetry
QCP allowed interactions at $O(q^4)$

$$\delta \propto |J_1| - 4J_2$$

All properties near Lifshitz point obey “one parameter universality” dependent upon u/K ratio
Lifshitz Point

\[S = \int dx d\tau \left\{ isA_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h\hat{m}_z \right\} \]

- Intuition: behavior near the Lifshitz point should be semi-classical, since "close" to FM state which is classical

\[
x \rightarrow \sqrt{\frac{K}{|\delta|}} x \quad \tau \rightarrow \frac{K}{\delta^2} \tau
\]

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ isA_B[\hat{m}] + \text{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \bar{h}\hat{m}_z \right\} \]

Large parameter: saddle point!

\[v = \frac{u}{K} \quad \bar{h} = \frac{hK}{\delta^2} \]
\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ \alpha_A \hat{m} + \text{sgn}(\delta)|\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v|\partial_x \hat{m}|^4 - \hbar \hat{m}_z \right\} \]

\(v \) derives from quantum fluctuations

Need it be positive?

\[\hat{m} \cdot \hat{m} = 1 \quad \rightarrow \quad \partial_x \hat{m} \cdot \partial_x \hat{m} = -\hat{m} \cdot \partial_x^2 \hat{m} \leq |\partial_x^2 \hat{m}| \]

Theory is stable for \(v > -1 \)

In fact, \(v < 0 \)

- Semiclassical large \(s \) limit: \(v = -\frac{3}{2s} \)
- \(s = 1/2 \) estimate: \(v_s = 1/2 = -\frac{9}{(2 + \sqrt{7})^2} \approx -0.42 \)
Saddle point

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ i s A_B [\hat{m}] + \text{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \bar{h} \hat{m}_z \right\} \]

Solution:

\[\hat{m} = \begin{pmatrix} |\Psi| \cos(qx + \phi) \\ \pm |\Psi| \sin(qx + \phi) \\ \sqrt{1 - |\Psi|^2} \end{pmatrix} \]

Obtain

\[q, \Psi \quad \text{versus} \quad h, v, \delta \]

many physical quantities
Saddle point

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ i s A_B[\hat{m}] + \text{sgn}(\delta)|\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v|\partial_x \hat{m}|^4 - \overline{h}\hat{m}_z \right\} \]

Solution:

\[\hat{m} = \begin{pmatrix} |\Psi| \cos(qx + \phi) \\ \pm |\Psi| \sin(qx + \phi) \\ \sqrt{1 - |\Psi|^2} \end{pmatrix} \]

Obtain

\[q, \Psi \quad \text{versus} \quad h, v, \delta \]

many physical quantities

cone state

metamagnetism
Saddle point

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ i s A_B[\dot{m}] + \text{sgn}(\delta) |\partial_x \dot{m}|^2 + |\partial^2 \dot{m}|^2 + v |\partial_x \dot{m}|^4 - \bar{h} \dot{m}\dot{z} \right\} \]

Note: at saddle point level there is no scale for δ
Saddle point predicts 1st order transition for $S < 6$!

Resonances in a dilute gas of magnons and metamagnetism of isotropic frustrated ferromagnetic spin chains

1 Departamento de Física, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina
2 Physics Department and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
3 Instituto für Theoretische Physik, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
4 Instituto für Theoretische Physik, Leibniz Universität Hannover, D-30167 Hannover, Germany

(Received 22 November 2011; published 14 December 2011)

We show that spin-S chains with SU(2)-symmetric, ferromagnetic nearest-neighbor and frustrating antiferromagnetic next-nearest-neighbor exchange interactions exhibit metamagnetic behavior under the influence of an external magnetic field for small S, in the form of a first-order transition to the fully polarized state. The corresponding magnetization jump increases gradually starting from an S-dependent critical value of exchange couplings and takes a maximum in the vicinity of a ferromagnetic Lifshitz point. The metamagnetism results from resonances in the dilute magnon gas caused by an interplay between quantum fluctuations and frustration.

$$v = -\frac{3}{2S} \quad \Rightarrow \quad \text{find } S_{cr} = 6$$

Thus, $S_{cr} = 5$ is the critical value of spin where the metamagnetic behavior vanishes in isotropic chains (for $S > 5$, it exists only in the presence of an easy-axis anisotropy). We would like to note that Ref. 22 reported a slightly different value of $S_{cr} = 6$; this discrepancy is due to the fact that Ref. 22 used just the leading term in the large-S expansion, while our present approach is exact to all orders in $1/S$. Figure 6 illustrates the behavior of S_{cr} as a function of the order of the $1/S$ expansion.
J_1 - J_2

saddle point

misses metamagnetic endpoint
and multipolar phases

\[\mathcal{E}_{FM} = \mathcal{E}_{cone} \]

\[\epsilon_1 = 0 \]
Metamagnetic endpoint?

Quantum corrections penalize E_{cone} but not E_{FM}

$$\frac{\hbar}{K}$$

$$\mathcal{E}_{\text{FM}} = \mathcal{E}_{\text{cone}}$$

$$\epsilon_1 = 0$$

$$\mathcal{E}_{\text{FM}} - \mathcal{E}_{\text{cone}} \sim a\delta^2$$

$$\sim \mathcal{E} \times \sqrt{\delta/K}$$

$$\Delta \mathcal{E}_{\text{cone}} = +f(v)\delta^{5/2}$$
Quantum corrections

\[S = \int dx d\tau \left\{ i s A_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\} \]

transformation to rotating frame \[\hat{e}_1 \times \hat{e}_2 = \hat{e}_3 = \hat{m}_{\text{saddle-point}} \]

\[\hat{m} = \sqrt{2 - \frac{\bar{\eta}\eta}{s}} \left[\frac{\bar{\eta} + \eta}{2\sqrt{s}} \hat{e}_1 + i \frac{\bar{\eta} - \eta}{2\sqrt{s}} \hat{e}_2 \right] + (1 - \frac{\bar{\eta}\eta}{s}) \hat{e}_3, \]

effective Bogoliubov Hamiltonian

\[S = S_{\text{sp}} + \int dx d\tau \left\{ \bar{\eta} \partial_\tau \eta + H(\bar{\eta}, \eta) \right\} + O(\eta^3) \]
diagonalization gives correction to GS energy
Metamagnetic endpoint?

$\frac{h}{K}$

$E_{FM} = E_{cone}$

$\epsilon_1 = 0$

$E_{FM} - E_{cone} \sim a\delta^2 - f(v)\delta^{5/2}$

Corrected first order curve bends slightly downward to intersect second order line
Instabilities

- Choose $E_{FM}=0$

What about multi-particle instabilities?
Instabilities

- Choose $E_{FM}=0$

Numerics suggests multipolar condensates beyond δ_c
2-magnon check of the proposed scenario

- Compute exact 2-magnon energy in QFT

\[H = \sum_k \epsilon_k \bar{\eta}_k \eta_k + \frac{1}{2L} \sum_{k_{pp'}} V(k_{/2+p},p_{/2-p}) \bar{\eta}_{k_{/2+p}} \eta_{k_{/2-p}} \eta_{k_{/2-p}} \eta_{k_{/2+p}} \]

\[\epsilon_k = (h + 2\kappa k^4 - 2\delta k^2)/s \]

\[V(k,p,q) = \frac{1}{s^2} \left[\frac{1}{2} \delta k^2 - \frac{1}{8} \kappa (1 + 4v) k^4 - \delta (p^2 + q^2) + \kappa (p^4 + q^4 + \frac{1}{2} (-3 + 4v) k^2 (p^2 + q^2) + 4(3 - 2v) p^2 q^2) \right] \]

Separation of metamagnetism and multipole formation
Summary

Lifshitz point is a “parent” of many phases

\[
S = \int dx d\tau \left\{ i s A_B [\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}
\]
\[\mathbf{d} > 1 \]

\[
S = \int dxd^{d-1}yd\tau \left\{ isA_B[\hat{m}] + \delta|\partial_x \hat{m}|^2 + c|\partial_y \hat{m}|^2 + K|\partial_x^2 \hat{m}|^2 + u|\partial_x \hat{m}|^4 - h\hat{m}_z \right\}
\]

- **Rescaling:**

\[
x \to \sqrt{\frac{K}{|\delta|}}x \quad \tau \to \frac{K}{\delta^2} \tau \quad y \to \frac{\sqrt{cK}}{\delta} y
\]

\[
S = \frac{\sqrt{K^dC^{d-1}}}{\delta^{d-1/2}} \int dxd^{d-1}yd\tau \left\{ isA_B[\hat{m}] + \text{sgn}(\delta)|\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + |\partial_y \hat{m}|^2 + v|\partial_x \hat{m}|^4 - \overline{h}\hat{m}_z \right\}
\]

: Similar theory applies in \(\mathbf{d} > 1 \), and very similar conclusions apply
Outline

- Magnon BEC
- Materials
- Basic theory and some numerics
- *Field theory of the Lifshitz point*
- *Spin-current state* near the end-point of $1/3$ magnetization plateau
Question

- Is magnon pairing possible in a system with purely repulsive (antiferromagnetic) interactions?

Nematic — superconductor analogy suggests positive answer: Magnon analogue of Kohn-Luttinger mechanism (e.g. pairing due to repulsive interactions)
THIS TALK:

2-magnon condensate near the end-point of the 1/3 magnetization plateau

\[H = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

\[\delta = \frac{40}{3} S \left(\frac{J - J'}{J} \right)^2 \]

OAS, Reports on Progress in Physics 78, 052502 (2015),
Spatially anisotropic model: classical vs quantum

\[H = \sum_{ij} J_{ij} S_i \cdot S_j - h \sum_i S_i^z \]

Umbrella state: favored classically; energy gain \((J-J')^2/J\)

Planar states: favored by quantum fluctuations; energy gain \(J/S\)

The competition is controlled by dimensionless parameter

\[\delta = S(J - J')^2 / J^2 \]
Emergent Ising orders in quantum two-dimensional triangular antiferromagnet at $T=0$

$$H = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

$$\delta = \frac{40}{3} S \left(\frac{J - J'}{J} \right)^2$$
UUD-to-cone phase transition

\[Z_3 \to U(1) \times Z_2 \text{ or } Z_3 \to \text{smth else} \to U(1) \times Z_2? \]

\[H = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

\[\delta = \frac{40}{3} S \left(\frac{J - J'}{J} \right)^2 \]
Low-energy excitation spectra

\[\epsilon_{d_2} = h_{c_2} - h + \frac{9 J k^2}{4} \]
for \(\delta < 3 \)

Magnetization plateau is **collinear** phase: preserves O(2) rotations about magnetic field -- no gapless spin waves. Breaks only discrete \(Z_3 \). Hence, **very stable**.

\[h_{c_2} - h_{c_1} = \frac{0.6}{2S} h_{\text{sat}} = \frac{0.6}{2S} (9JS) \]

Bose-Einstein condensation of \(d_1 \) (\(d_2 \)) mode at \(k = 0 \) leads to lower (upper) co-planar phase

Alicea, Chubukov, OS PRL 2009
Low-energy excitation spectra near the plateau’s end-point

\[\delta = \frac{40}{3} S (1 - J' / J)^2 \] parameterizes anisotropy \(J'/J \)

Extended symmetry:
4 gapless modes at the plateau’s end-point

\[k_0 = \sqrt{\frac{3}{10S}} \]

S >> 1

Magnetization plateau is \textbf{collinear} phase: preserves O(2) rotations about magnetic field -- no gapless spin waves. Breaks only discrete \(Z_3 \).

Alicea, Chubukov, OS PRL 2009
Bosonization of 2d interacting magnons

\[H_{d_1d_2}^{(4)} = \frac{3}{N} \sum_{p,q} \Phi(p,q) \left(d_{1,k_0+p}^\dagger d_{2,-k_0-p}^\dagger, -k_0 + q d_{2,k_0-q} - d_{1,k_0+p}^\dagger d_{2,-k_0-p}^\dagger, -k_0 + q d_{2,k_0-q} \right) + \text{h.c.} \]

\[\Phi(p,q) \sim \frac{(-3J)k_0^2}{|p||q|} \]

Singular magnon interaction

Magnon pair operators

\[\left\{ \begin{array}{ll}
\Psi_{1,p} & = d_{1,k_0+p} d_{2,-k_0-p} \\
\Psi_{2,p} & = d_{1,-k_0+p} d_{2,k_0-p}
\end{array} \right. \]

Obey canonical Bose commutation relations in the UUD ground state

\[[\Psi_{1,p}, \Psi_{2,q}] = \delta_{1,2} \delta_{p,q} \left(1 + d_{1,k_0+p}^\dagger d_{1,k_0+p} + d_{2,k_0+p}^\dagger d_{2,k_0+p} \right) \rightarrow \delta_{1,2} \delta_{p,q} \]

In the UUD ground state

\[\langle d_{1}^\dagger d_1 \rangle_{uud} = \langle d_{2}^\dagger d_2 \rangle_{uud} = 0 \]

★ Interacting magnon Hamiltonian in terms of \(d_{1,2} \) bosons =

Non-interacting Hamiltonian in terms of \(\Psi_{1,2} \) magnon pairs

Chubukov, OS PRL 2013
Two-magnon instability

Magnon pairs $\Psi_{1,2}$ condense \textit{before} single magnons $d_{1,2}$

Equations of motion for Ψ - Hamiltonian

\[
\langle \Psi_{1,p}^{\dagger} - \Psi_{1,p} \rangle = \frac{6 J f_p^2}{\Omega_p} \frac{3}{N} \sum_{q} f_q^2 \langle \Psi_{2,q}^{\dagger} - \Psi_{2,q} \rangle \\
\langle \Psi_{2,p}^{\dagger} - \Psi_{2,p} \rangle = \frac{6 J f_p^2}{\Omega_p} \frac{3}{N} \sum_{q} f_q^2 \langle \Psi_{1,q}^{\dagger} - \Psi_{1,q} \rangle
\]

`Superconducting' solution with \textit{imaginary} order parameter

\[
\langle \Psi_{1,p} \rangle = \langle \Psi_{2,p} \rangle \sim i \frac{\gamma}{p^2}
\]

\textbf{Instability} = softening of two-magnon mode @ $\delta_{cr} = 4 - O(1/S^2)$

\[
1 = \frac{1}{S} \frac{1}{N} \sum_{p} \frac{k_0}{\sqrt{|p|^2 + (1 - \delta/4)k_0^2}}
\]

\textbf{no} single particle condensate

\[
\langle d_1 \rangle = \langle d_2 \rangle = 0
\]

Chubukov, OS PRL 2013
Two-magnon condensate = Spin-current nematic state

\[J > 0 \]
\[J' < 0 \]

\[\hat{h}_z \cdot \mathbf{S}_A \times \mathbf{S}_C = \hat{h}_z \cdot \mathbf{S}_C \times \mathbf{S}_B = \hat{h}_z \cdot \mathbf{S}_B \times \mathbf{S}_A \propto \gamma \]

Finite scalar (and vector) chiralities. Sign of \(\gamma \) determines sense of spin-current circulation

Spontaneously broken \(\mathbb{Z}_2 \) -- spatial inversion
[in addition to broken \(\mathbb{Z}_3 \) inherited from the UUD state]

Leads to spontaneous generation of Dzyaloshinskii-Moriya interaction

Chubukov, OS PRL 2013
Continuous transition: plateau \rightarrow spin-current \rightarrow cone!

\[Z_3 \rightarrow Z_3 \times Z_2 \rightarrow U(1) \times Z_2 \]

\[H = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

\[\delta = \frac{40}{3} S \left(\frac{J - J'}{J} \right)^2 \]
Incommensurate Spin Correlations in Spin-1/2 Frustrated Two-Leg Heisenberg Ladders

Alexander A. Nersesyan, 1 Alexander O. Gogolin, 2 and Fabian H.L. Eßler 3

FIG. 3. Structure of the spin currents in the spin nematic phase.

Chiral Mott insulator with staggered loop currents in the fully frustrated Bose-Hubbard model

Arya Dhar, 1 Tapan Mishra, 2 Maheswar Maji, 3 R. V. Pai, 4 Subroto Mukerjee, 3, 5 and Arun Paramekanti 2, 3, 6, 7

Spin-current phase = chiral Mott insulator

gapped single particles; but
spontaneously broken time-reversal = spontaneous circulating currents
Conclusions

Magnon pairing is a fascinating problem

Route to multipolar orders of frustrated ferromagnets
extention to d=2 problems?

Spin-current/Chiral Mott insulators
Universal emergence of the one-third plateau in the magnetization process of frustrated quantum spin chains

F. Heidrich-Meisner, I. A. Sergienko, A. E. Feiguin, and E. R. Dagotto

\[H = \sum_i \left[\sum_{n=1,2} J_n \left\{ \frac{1}{2} (S_i^z S_{i+n}^z + S_i^x S_{i+n}^x) + \Delta S_i^z S_{i+n}^z \right\}
ight. \\
\left. - h S_i^z + D (S_i^z)^2 \right], \]

\[s = 1, 3/2, 2 \]

FIG. 11. (Color online) Magnetization curves of frustrated spin-1 chains with an anisotropic exchange ($\Delta = 2$) for (a) $J_z = 0$, (b) $J_z = 0.2$, (c) $J_z = 0.4$, and (d) $J_z = 0.8$. DMRG results (straight lines) are for $N = 60$ sites, the dashed lines are ED results (PBC). The capital letters stand for: Néel phase N, canted phase C, double-Néel phase DN.

FIG. 12. (Color online) Magnetization curves for frustrated spin-3/2 chains with an anisotropic exchange ($\Delta = 2$) for (a) $J_z = 0$, (b) $J_z = 0.2$, (c) $J_z = 0.4$, and (d) $J_z = 0.8$. DMRG results (straight lines) are for $N = 60$ sites, the dashed lines are ED results (PBC). The capital letters stand for: Néel phase N, canted phase C, double-Néel phase DN.