[24 pts.] A rock is hurled from the top of a three-story building (h = 12.0 m) with a velocity (\(\vec{V}_0 \)) of 26.0 m/s at an angle of 37.0° (\(\theta \)) above the horizontal (see drawing). Find the horizontal distance (R) of the rock just as it hits the ground.

First find time of flight to ground for CS CHP5BN
\[h = v_0 \sin \theta \cdot t + \frac{1}{2} a_y \cdot t^2 \]
\[h = 20 \sin 37^\circ \cdot t - \frac{1}{2} \cdot 9.8 \cdot t^2 \]
\[-12.0 = 20 \sin 37^\circ \cdot t - \frac{1}{2} \cdot 9.8 \cdot t^2 \]
\[4.9 \cdot t^2 - 15.6 \cdot t + 12.0 = 0 \]

Use quadratic
\[t = \frac{-15.6 \pm \sqrt{(-15.6)^2 - 4(4.9)(12.0)}}{9.8} \]
\[t = \frac{-15.6 \pm \sqrt{234.44 - 4 \cdot 4.9 \cdot 12.0}}{9.8} \]
\[t = \frac{-15.6 \pm \sqrt{156.84}}{9.8} \]
\[t = \frac{-15.6 \pm 12.5}{9.8} \]
\[t = 3.825, -0.435 \]

Calculate R
\[x = R = x_0 = v_0 \cos \theta \cdot t \]
\[R = (20.8 \text{ m/s}) (3.825) \]
\[R = 79.5 \text{ m} \]