A 5.00 kg box is sitting next to a 12.0 kg crate on a horizontal surface. A 150 N force is applied horizontally on the 5.00 kg box. See figure. The coefficient of kinetic friction between each mass and the surface is $\mu_k = 0.600$.

A. Construct a free-body diagram for each mass using the objects shown below.

![Free-body diagrams](Image)

3 Pts

B. Determine the acceleration of the two mass system.

Box

\[m_{\text{box}} \alpha = F_{\text{ext}} - F_{\text{friction,box}} - F_{\text{crate on box}} \]

\[\alpha = \frac{50 \text{ N}}{17.0 \text{ kg}} = 2.94 \text{ m/s}^2 \]

Crate

\[m_{\text{crate}} \alpha = F_{\text{friction,crate}} - F_{\text{box on crate}} \]

\[a_{\text{max}} = (0.600)(12.0 \text{ kg})(2.94 \text{ m/s}^2) = 70.6 \text{ N} \]

6 Pts

C. As the box and crate accelerate together, what is the force the right face of the box exerts on the left face of the crate?

\[F_{\text{box on crate}} = m_{\text{crate}} \omega + F_{\text{friction,crate}} = (12.0 \text{ kg})(2.94 \text{ m/s}^2) + 70.6 \text{ N} = 106 \text{ N (to the right)} \]

6 Pts

D. As the box and crate accelerate together, what is the magnitude of the force exerted by the left face of the crate on the right face of the box?

\[F_{\text{crate on box}} = -F_{\text{box on crate}} = 106 \text{ N (to the left)} \]

2 Pts