\[N = 340 \]
\[\text{Average Credits: 14.81} \]

SECOND MIDTERM

Name (print) __________________________ Name (signed) __________________________

Discussion Instructor (circle): Basko Chakhbazian Condella Hasan McMurray Paul Zhukov

Discussion Section # ______

SHOW ALL WORK!!!!!!

REPORT ALL NUMBERS TO THREE SIGNIFICANT FIGURES!

Use the conversion constants and data given on the front page.

In the diagram shown P is applied to block 2 in a horizontal direction. \(\mu_s \) and \(\mu_k \) apply to ALL surfaces.

\[m_1 = 2.30 \text{ kg} \]
\[m_2 = 4.75 \text{ kg} \]
\[\mu_s = 0.60 \]
\[\mu_k = 0.50 \]

(a) Draw clear, labeled free body and force diagrams for block 1.
(b) Draw clear, labeled free body and force diagrams for block 2.
(c) Calculate the maximum value of \(P \) such that block 1 does not slide with respect to block 2.

\[\theta = 20.0^\circ \]

\[\text{(a). FBD:} \]
\[\text{(b). FBD:} \]
\[\text{(c). For Block 1, } N_1 = m_1 g \cos \theta \quad f_{1s} = \mu_s m_1 g \cos \theta \]
\[a_x = \frac{f_{1s} - m_1 g \sin \theta}{m_1} = \mu_s g \cos \theta - g \sin \theta = 2.17 \text{ m/s}^2 \]

For block 2,
\[N_2 = N_1 + P \sin \theta + m_2 g \cos \theta \quad f_{2k} = \mu_k N_2 \]
\[P \cos \theta - \mu_k N_2 - \mu_s m_2 g \cos \theta - m_2 g \sin \theta = m_2 a_x \]
\[P \cos \theta - \mu_k m_2 g \cos \theta - \mu_k P \sin \theta - m_2 g \cos \theta - m_2 g \sin \theta - m_2 a_x = 0 \]
\[P = \frac{m_2 a_x + \mu_k (m_1 + m_2) g \cos \theta + \mu_s m_1 g \cos \theta + m_2 g \sin \theta}{\cos \theta - \mu_k \sin \theta} \approx 92.9 \text{ N} \]