PROBLEM 3

A bullet of mass \(m \) strikes a block of wood of mass \(M \) on an inclined plane, and is embedded in it. The coefficient of friction between the block and the plane is 0.55. The block slides up the plane a distance \(d \). Find the original velocity of the bullet.

\[
\frac{(M+m)}{2} \frac{V_0^2}{\mu} = (M+m)gd\sin\theta + (M+m)gd\cos\theta
\]

\(\mu = 0.55 \)

\[
V_0 = \sqrt{2gd(\sin\theta + \mu \cos\theta)}
\]

\[
MV_0 = (M+m)V_0
\]

\[
V_0 = \frac{M+m}{m} \sqrt{2gd(\sin\theta + \mu \cos\theta)}
\]

\[
V_0 = \frac{M+m}{m} \sqrt{2gd(\sin\theta + 0.55 \cos\theta)}
\]

\(\text{for algebra} \)