A block of mass m is launched in the frictionless circular loop—the loop shown. Given that the spring constant is k, the radius R, and the mass m, find the distance the spring must be compressed before launch, if the normal force on the block at the top of the loop is to be $2mg$.

$$E_A = \frac{1}{2} k x^2$$

$$E_B = \frac{1}{2} m v_B^2 + mg(2R)$$

$$a_n = \frac{v_B^2}{R} = \frac{F}{m} = \frac{N + mg}{m} = 3g$$

$$\Rightarrow v_B^2 = 3gR$$

Conservation of Energy

$$\frac{1}{2} k x^2 = \frac{1}{2} m v_B^2 + 2mgR$$

$$= \frac{1}{2} m (3gR) + 2mgR$$

dividing by $k/2$

$$x^2 = \frac{3mgR + 4mgR}{k} = \frac{7mgR}{k}$$

$$x = \sqrt{\frac{7mgR}{k}}$$

- 9 pts
- 7 pts answer & algebra