The object shown is a sheet of material of density \(\rho \) bounded by the line \(y = 0, x = x_0 \) and the curve \(y = ax^3 \). The thickness perpendicular to the paper varies according to the relationship \(t = Cx \). \(C \), \(a \) and \(x_0 \) are constants. Calculate the \(x \) coordinate of the center of mass of this object. Express your answer in terms of numbers, \(x_0 \), \(c \) and \(a \) as needed.

Solution:

\[
x_c = \frac{\int x \, dm}{\int dm}, \quad \text{where}
\]

\[
dm = \rho \, ty \, dx = \rho ac \, x^4 \, dx
\]

\[
\int_0^{x_0} \rho ac \, x^4 \, dx = \int_0^{x_0} \rho ac \, x^5 \, dx = \frac{1}{6} x_0^6 = \frac{5}{6} x_0.
\]