SHOW ALL WORK!!!!!
REPORT ALL NUMBERS TO THREE SIGNIFICANT FIGURES!
Use the conversion constants and data given on the front page.

In the diagram shown the force, \(F \), is at \(15.0^\circ \) above the horizontal.

(a) Calculate the work done by gravity when the block is moved 1.35 m down the plane.
(b) What is the work done by the force \((F) \) when the block is moved 2.35 m down the plane.
(c) Find the work done by friction when the block is moved 2.35 m down the plane.

\[
W = F \cdot \Delta s = (-mg) (-1.35 \text{ m} \sin \theta) = \frac{7.35 \text{ J}}{}
\]

\[
= (3.20 \text{ kg}) (9.80 \text{ m/s}^2) (1.35 \text{ m}) \sin 10^\circ
\]

\[
W = F \cdot \Delta s = [(35.0 \text{ N}) \sin 25^\circ \uparrow + (35.0 \text{ N}) \cos 25^\circ \uparrow] \cdot 2.35 \text{ m} \uparrow
\]

\[
= 74.5 \text{ J}
\]

\[
f = \mu_k N = \frac{\Sigma F_y}{m} = a_y = 0 = N - mg \cos 10^\circ + F \sin 25^\circ
\]

\[
N = mg \cos 10^\circ - F \sin 25^\circ
\]

\[
f = (0.55) [(mg \cos 10^\circ) - F \sin 25^\circ] \uparrow
\]

\[
W = F \cdot \Delta s = (0.55) [(3.20 \text{ kg}) (9.80 \text{ m/s}^2) \cos 10^\circ - 35 \text{ N} \sin 25^\circ] (-2.35 \text{ m})
\]

\[
= -20.5 \text{ J}
\]