The cross hatched figure shown has a density ρ, and a thickness t. The quantities b and a are positive constants. Calculate the moment of inertia of this object for rotation about the y-axis. Be sure to put your answer in proper finished form.

\[I_y = \frac{m \int r^2 \, dm}{\int dm} \]

\[dm = \rho t \, dy \, dx = \rho t (b-ax) \, dx \]

\[\int_0^b \int_0^t x^2 (b-ax) \, dx = \rho t \int_0^b \left(bx^2 - ax^3 \right) \, dx \]

\[= \rho t \left[\frac{bx^3}{3} - \frac{ax^4}{4} \right]_0^b = \rho t \left[\frac{b^4}{3} - \frac{b^3}{4} \right] \]

\[\int_0^a (b-ax) \, dx = \rho t \left[bx - \frac{ax^2}{2} \right]_0^b = \rho t \left[\frac{b^2}{2} - \frac{b^2}{2} \right] \]

\[I_y = \frac{\rho t \left[\frac{b^4}{3} - \frac{b^3}{4} \right]}{\rho t \left[\frac{b^2}{2} - \frac{b^2}{2} \right]} = \frac{b^2}{a^2} \cdot \frac{1}{\frac{1}{2}} = \frac{1}{6} M \frac{b^2}{a^2} \]