FIRST MIDTERM

Given a mass on a frictionless surface oscillating according to the function (distances are in meters, angular frequency in rad/s.):

\[x = 3.25 \cos(0.435 t + 62.5^\circ) \]

(a) Calculate the velocity at \(t = 0 \).

\[-1.254 \text{ m/s}\]

(b) Calculate the position at \(t = 0 \).

\[1.501 \text{ m}\]

(c) If the mass is 0.177 kg, calculate the energy in the oscillations.

\[1.769 \text{ J}\]

(d) Express the solution above as \(A \cos \omega t + B \sin \omega t \). Calculate \(A \) and \(B \).

\[A = 1.501 \text{ m} \]

\[B = -2.88 \text{ m} \]

(e) How far does the mass travel in 3.00 s?

\[3.89 \text{ m}\]
(a) For V_t, need $\frac{dx}{dt}$

$$x(t) = 3.25 \cos (0.435t + 62.5^\circ)$$

$$\frac{dx}{dt} = -3.25(0.435) \sin (0.435t + 62.5^\circ) = -1.254 \text{ m/s}$$

(b) $x(0) = 3.25 \cos (0 + 62.5^\circ) = 1.501 \text{ m}$

(c) Energy is all kinetic @ $x = 0$

$$E_T = \frac{1}{2} m V_{max}^2 \quad V_{max} = (3.25)(0.435)(1)$$

$$E_T = 0.8769 \text{ J}$$

(d) $\cos(A+B) = \cos A \cos B - \sin A \sin B$

$$3.25 \cos(62.5^\circ) \cos wt - 3.25 \sin(62.5^\circ) \sin wt$$

$$= 1.501 \cos wt + (-2.88) \sin wt$$

$$A = 1.501 \quad B = -2.88$$

next pg. for e)
since phase angle ≠ 0, must see what were looking e.

\[\tau = \frac{2\pi}{\omega} = 14.445 \quad \frac{14.44}{4} = 3.615 \text{ min} \]

Even if oscillation began @ \(x = 0 \) (i.e. phase angle = 90°), then in 3 seconds the object would only move in one direction. This allows me to use \[|X(3) - X(0)| = \text{dist. traveled} \]

\[\Delta x = \frac{3.25}{2} \left\{ \cos \left(\frac{425}{3} + \frac{62.5\pi}{180} \right) - \cos \left(0 + \frac{62.5\pi}{180} \right) \right\} \]

\[x(0) = \frac{1.50 \text{ m}}{X(3)'' = \frac{2.387 \text{ m}}{X(3) = 3.89 \text{ m}}} \]