Physics 301
Winter Quarter 1990
March 15, 1990
George Williams

\[\bar{x} = 14.27 \]
\[\sigma = 8.31 \]
\[N = 186. \]

FINAL EXAM

Name (print) **MARK REEVE**
Name (signed) **Mark Reeve**

Discussion Instructor (circle one): Baselgia
Morrill
Reeve
Stoops
Zhang

Discussion Section #

SHOW ALL WORK!!!
REPORT ALL NUMBERS TO THREE SIGNIFICANT FIGURES!
Use the conversion constants and data given on the front page.

A cylinder of radius \(R \) (not small) and mass \(M \) rolls without sliding on a surface with the shape shown. It starts from rest.

(a) Calculate the largest possible value of \(h \), such that the cylinder does not leave the surface when it passes over the hump. \(h \) is measured to the center of mass of the cylinder. Express this in terms of \(R \) and \(A \) (the radius of curvature of the top of the hump). The top of the hump is \(2A \) above the ground.

\[E_{\text{total}} = Mgh \quad \text{[Not } Mgh(h+R) \text{ because } h \text{ is measured to the center of mass of the cylinder]} \]

\[E_{\text{hump}} = Mg(2A+R) + \frac{1}{2} Mv^2 + \frac{1}{2} I \omega^2 \]

\[E_{\text{total}} = E_{\text{hump}} \Rightarrow Mgh = Mg(2A+R) + \frac{1}{2} Mv^2 + \frac{1}{2} I \omega^2 \]

Putting it all together:
\[Mgh = Mg(2A+R) + \frac{1}{2} Mv^2 + \frac{1}{2} I \omega^2 \]

\[h = 2A + R + \frac{1}{2} (A+R) + \frac{1}{2} (A+R) \]

\[h = \frac{1}{4} (7R + 11A) \]

(b) For the starting value of \(h \) calculated in (a), the apparent weight of the cylinder at \(C \) is found to be 4 Mg. Find the radius of curvature at \(C \).

\[
\begin{align*}
V_C &= 3g(R_c-R) \\
V_C &= R_w \\
E_{\text{conservation}} &= \frac{1}{2} Mv_C^2 + \frac{1}{2} I \omega_C^2 + Mgh \\
\Rightarrow Mgh &= \frac{1}{2} Mv_C^2 + \frac{1}{2} I \omega_C^2 + Mgh \\
\Rightarrow h &= R + \frac{g}{3} (R_c-R) \\
&= \frac{R_c}{4} (12R+11A)
\end{align*}
\]