1. A capacitor is formed of two 1 mm thick parallel plates that are separated by 2 mm. An identical metal plate is then carefully inserted between the two plates so that a space of 0.5 mm is left on either side of the new plate, as shown in the figure.

A. [6 pts.] Does the capacitance of the capacitor change after the metal plate is inserted between the two original plates? Does it increase, decrease, or stay the same?
B. [6 pts.] Explain why a change does or does not occur.

A) Capacitance increases

B) The metal plate creates two capacitors in series, so the new capacitance is found by combining each new \(C \) that has the same area.

\[
\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{(4\mu F)} + \frac{1}{(4\mu F)} = \frac{d}{2\varepsilon_0 A}
\]

\(C_{new} = 2C_{old} \)

2. Three capacitors are connected as shown in the figure. The capacitances shown are as follows: \(C_1 = 4 \mu F \), \(C_2 = 3 \mu F \), and \(C_3 = 5 \mu F \). The battery voltage is 6 V.

A. [11 pts.] What is the magnitude of the charge on capacitor \(C_2 \)?
B. [11 pts.] What is the potential difference across the plates of capacitor \(C_3 \)?

A) \(C = \frac{Q}{V} \)

\[C_{23} = \left(\frac{1}{3} \frac{1}{5} \right) = 1.875 \mu F \]

\(C_1 \) and \(C_{23} \) both have 6V since they are parallel

\[Q_{23} = C_{23} V_{23} = (1.875\mu F)(6V) = 11.25 \mu C \]

\(Q_2 = Q_3 = 11.25 \mu C \)

so \(Q_3 = 11.25 \mu C \)

B) \(Q_3 = Q_2 = 11.25 \mu C \) (series)

\[V_3 = \frac{Q_3}{C_3} = \frac{11.25 \mu C}{5 \mu F} \]

\[V_3 = 2.25 V \]
SHOW ALL WORK!

The figure applies to the following three problems.

A. [11 pts.] With the switch open, what is the current I_1? (A positive sign means that current flows in the direction of the arrow.)

B. [11 pts.] How much current passes through the switch after it is closed?

C. [11 pts.] With the switch closed, what is the voltage difference, $V(A) - V(B)$?

Diagram:

A.

\[
\begin{align*}
10V & \quad \text{10}\Omega \\
5\Omega & \quad 6V \\
5\Omega & \quad 15\Omega
\end{align*}
\]

Loop rule:

\[
0V = -10V + 10\Omega I_1 + 50\Omega I_1 + 15\Omega I_1 + 6V + 5\Omega I_1
\]

\[
4V = 80\Omega \cdot I_1 \Rightarrow I_1 = 50mA
\]

B.

\[
\begin{align*}
10V & \quad \text{10}\Omega \\
5\Omega & \quad 6V \\
15\Omega & \quad 5\Omega
\end{align*}
\]

\[
I_1 = \frac{10V}{10\Omega + 50\Omega} = \frac{1}{6}A
\]

\[
I_2 = \frac{6V}{5\Omega + 15\Omega} = \frac{3}{10}A
\]

\[
I_{\text{switch}} = I_1 + I_2 = \frac{1}{6}A + \frac{3}{10}A
\]

\[
I_{\text{switch}} = 0.58mA
\]

C.

\[
V(A) - V(B) = 6V - 15\Omega \cdot I_2 + 50\Omega \cdot I_1 \Rightarrow \\
\Delta V = 9.83V
\]

"There are other paths available."
The switches S_1 and S_2 in the figure are initially open (as shown), and the capacitors are initially uncharged. Then, at time $t = 0$, both switches are closed. Assume $V_B = 18 \text{ V}$, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $C_1 = 10 \mu\text{F}$, $C_2 = 20 \mu\text{F}$, and $C_3 = 30 \mu\text{F}$.

A. [11 pts.] What is the current through the resistor R_1 immediately after the switches are closed?

B. [11 pts.] What is the current through resistor R_2 a very long time after the switches are closed?

C. [11 pts.] What is the charge on the capacitor C_2 a very long time after the switches are closed?

Solution

A. $\Sigma V = V_B - I_1 R_1 - V_{C_2} = V_B - I_1 R_1 \rightarrow 0 = 0$ \(I_1 = 1.8 \text{ A} \)

At time $t = 0$, the charge on the capacitors is zero, so the voltage drop across the capacitors is zero. Since the 4 paths are in parallel, they must each have a voltage drop of zero and so current only flows through C_2 and C_3 paths.

B. As $t \rightarrow \infty$ the capacitor is full and no more current can flow through it. Since R_2 is in series with C_1, the current through R_2 is zero. Amps

C. For the Kirchhoff loop $\frac{V_B}{R_1} = \frac{V_{C_2}}{R_3}$

This is the only loop with current as $t \rightarrow \infty$ then $V_B - I_1 R_1 - I_3 R_3 = 0$ \(I = 0.45 \text{ A} \)

Since the path through R_3 is parallel to the C_2 path \(V_{R_3} = V_{C_2} \)

$V_{R_3} = I R_3 = 13.5 \text{ V} = V_{C_2}$ \(Q_{C_2} = C_2 V_{C_2} = 20 \mu\text{F} \times 13.5 \text{ V} = 2.7 \times 10^{-3} \text{ C} \)