Two electrons, labeled A and B are accelerated to different velocities and are sent into a region containing a constant, uniform magnetic field of magnitude 1.5 T but with unknown direction. The electrons' initial velocities are in the +x direction, and they enter the magnetic field region at the origin. Within the region of the field, they follow curved paths confined to the x-y plane (z = 0) then emerge at different locations on the y axis: electron A emerges at y = a, and electron B emerges at y = b, where b > a as shown.

1. [7 pts.] What is the direction of the uniform magnetic field in the region x > 0? Explain how you know this.

2. [13 pts.] What is the ratio of the electrons' velocities: \(\frac{v_A}{v_B} \)? Give this ratio in terms of the values \(a \) and \(b \).

\[R = \frac{mv}{q_1B} \]

\[\frac{v_A}{v_B} = \frac{1q_1B(a/2)}{1q_1B(b/2)} = \frac{a}{b} \]

Values of \(1q, m, B \) are the same for both electrons!

A square loop with sides \(d = 0.2 \text{ m} \) carries a current \(I \) and pivots without friction about the z-axis. A uniform magnetic field, \(B = 2.4 \text{ T} \), points in the +x direction, and the loop initially makes an angle \(\theta = 70^\circ \) with the x-z plane.

1. [7 pts.] What is the direction of the torque on the loop? Explain how you know this.

2. [13 pts.] The magnitude of the torque on the loop is measured to be \(\tau = 1.2 \text{ N} \cdot \text{m} \). What is the magnitude of the current \(I \) in the loop?

\[\tau = \mu \times B \Rightarrow \tau \text{ is obtained from magnetic moment } (\mu) \]

\(\mu \text{ is perpendicular to the loop itself and direction is given by RHR.} \)

\[\tau \text{ is INTO the Page!} \]

\[\tau = \mu \cdot B \cdot \sin \phi = \mu I d^2 \cdot B \cdot \sin (\theta + 90^\circ) \Rightarrow I = \frac{\tau}{d^2 \cdot B \cdot \sin (\theta + 90^\circ)} \]

\[I = 36.5 \text{A} \]
A rectangular loop of wire has a width of $a = 12$ cm and a height of $b = 24$ cm. It lies in the same plane as an infinite wire that carries a current $I = 5.00$ A. The left edge of the wire is a distance a from the infinite wire, as shown. Assume that the rectangular loop also carries a current of I that flows in the direction shown by the arrows.

1. **[13 pts.]** What is the magnitude of the magnetic force on the rectangular loop?
2. **[7 pts.]** With the currents directed as shown, what is the direction of the force on the rectangular loop? Explain how you know.

B. A solid, infinitely long, conducting rod has a radius $a = 15$ cm and lies along the z axis. It carries a current $I = 30$ A in the $+z$ direction. The current is uniformly distributed across the rod. It is surrounded, at a distance $b = 30$ cm by a thin coaxial conducting shell that carries a current of the same magnitude, but directed in the $-z$ direction.

1. **[13 pts.]** What is the magnitude of the magnetic field at a distance of 10 cm from the origin?
2. **[7 pts.]** What is the direction of the magnetic field at the point $(x = 0, y = 10$ cm)? Explain how you know.
SHOW ALL WORK!

A rectangular wire loop of unknown length \(L \), width \(w \), and a resistance of \(R = 3 \, \Omega \) is pulled out of a constant, uniform magnetic field with velocity \(v \). The magnetic field is of unknown magnitude \(B \), points into the plane of the paper, and is confined to the rectangular region as shown. Work must be done on the loop at the rate of 12 J/s \((F \cdot v = 12 \, J/s)\) to move it through the magnetic field.

1. [7 pts.] What is the direction of the current running through the loop? Explain how you know.

2. [13 pts.] What is the magnitude of the current running through the loop?

\[
\begin{align*}
1. \quad &\text{clockwise} + 3 \text{pts.} \\
5. \quad &\text{explanation: explanation of Lenz's law; I in direction to} \\
&\text{oppose } \Delta \mathbf{B} \text{; \(\mathbf{E}_B = q \, \mathbf{v} \times \mathbf{B} \), careful to distinguish } \mathbf{F}_B \text{ on} \\
&\text{charge } q \text{ and applied external force } \mathbf{F}. + 4 \text{ pts.} \\
2. \quad &P = IV = I^2R \\
&\sqrt{\frac{P}{R}} = \left| I \right| \Rightarrow \sqrt{\frac{12 \, J/s}{3 \, \Omega}} = 2 \, A \\
&\text{\(\alpha \): } F = I \omega B \Rightarrow \frac{F}{\omega B} = I \\
\text{and } I = \frac{E}{R} = \frac{IR}{R} \Rightarrow B = \frac{IR}{\omega v} \Rightarrow -7 \text{ pt for arithmetic error} \\
\text{now } I = \frac{F}{\omega \left(\frac{IR}{\omega v} \right)} = \frac{F v}{IR} \Rightarrow I^2 = \frac{F v}{R} \\
&\text{\(\implies I = \sqrt{\frac{12 \, J/s}{3 \, \Omega}} = 2 \, A. \) } \\
\end{align*}
\]