Show all work!! Report all numbers to (three) (3) significant figures.

[30 pts.] A loop of wire in the shape of a rectangle of width w and length L and a long, straight wire carrying a current I lie on a tabletop as shown in the figure below.

(a) Determine the magnetic flux through the loop due to the current I. (Use any variable stated above along with the following as necessary: μ_0 and π.)

(b) Suppose the current is changing with time according to $I = a + bt$, where a and b are constants. Determine the magnitude of the emf that is induced in the loop if $b = 2.4962$ A/s, $h = 3.25$ cm, $w = 5$ cm, and $L = 2$ m.

(c) What is the direction of the induced current in the rectangle?

(a) From definition of magnetic flux $\phi_B = \int \vec{B} \cdot d\vec{A}$

Magnetic field of a long wire: $|B| = \frac{\mu_0 I}{2\pi w}$ with direction into the page.

Area: $dA = L \, dw$.

Then flux is found as $\phi_B = \int_{w}^{w+h} \frac{\mu_0 I L}{2\pi w} \, dw = \frac{\mu_0 I L}{2\pi} \ln \left(\frac{w+h}{h} \right)$

(b) $\text{EMF} = -\frac{\partial \phi_B}{\partial t}$

Substitute I by $(a+bt)$ in ϕ_B and take time derivative:

$\text{EMF} = -\frac{\mu_0 L a}{2\pi} \ln \left(\frac{w+h}{h} \right) = \frac{1.26 \times 10^{-6} \times 2 \times 2.4962}{2 \times 3.14} \ln \frac{8.25}{3.25} = 9.3 \times 10^{-7}$ V

(c) Due to the conservation of energy, loop generate opposite direction of magnetic field. So current is counterclockwise.
Show all work!! Report all numbers to three (3) significant figures.

[35 pts.] In the circuit diagrammed in the figure below, assume the switch has been closed for a long time interval and is opened at \(t = 0 \). Also assume \(R = 2 \, \Omega \), \(L = 2 \, \text{H} \), and \(E = 10 \, \text{V} \).

Spts (a) Before the switch is opened, does the inductor behave as an open circuit, a short circuit, a resistor of some particular resistance, or none of those choices? Explain.

Spts (b) What current does the inductor carry?

Spts (c) How much energy is stored in the inductor for \(t < 0 \)?

Spts (d) After the switch is opened, what happens to the energy previously stored in the inductor?

Spts (e) Sketch a graph of the current in the inductor for \(t \geq 0 \). Label the initial and final values and the time constant.

\[+3 \]

\[+2 \]

\[+1 \]

\[+1 \]

\[+2 \]

\[+1 \]

\[+2 \]

\[+2 \]

\[+2 \]

\[+2 \]
Show all work!! Report all numbers to three (3) significant figures.

[35 pts.] The switch in the figure below is connected to position a for a long time interval. At $t = 0$, the switch is thrown to position b. After this time, what are the following? (Let $C = 20 \, \mu F$.)

(a) the frequency of oscillation of the LC circuit;
(b) the maximum charge that appears on the capacitor;
(c) the maximum current in the inductor;
(d) the total energy the circuit possesses at $t = 3.00 \, s$.

\[\omega = \frac{1}{\sqrt{LC}} \]
\[f = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi} \sqrt{\frac{5.055 \times 10^{-3} \times 2 \times 10^{-6}}{2 \times 10^{-6}}} \]
\[f = 500.54 \, Hz \quad \text{Ans.} \]

(b) \[Q_{\text{Max}} = CV_{\text{battery}} \]
\[Q_{\text{Max}} = 2 \times 10^{-6} \times 10 \, C \]
\[Q_{\text{Max}} = 2 \times 10^{-5} \, C \quad \text{Ans.} \]

(c) \[E_{\text{Max}} \]
Energy conservation
\[\frac{1}{2} L I_m^2 = \frac{1}{2} C \]
\[I_m = Q_m \frac{1}{\sqrt{LC}} \]
\[I_{\text{Max}} = 0.629 \, A \quad \text{Ans.} \]

(d) Total energy is conserved at any time t.
\[E = \frac{1}{2} Q_m^2 = \frac{1}{2} C I_m^2 = 0.001 \, J \quad \text{Ans.} \]