Show all work!! Report all numbers to three (3) significant figures.

[30 pts.] The figure below shows an overhead view of a room of square floor area and side \(L \). At the center of the room is a mirror set in a vertical plane and rotating on a vertical shaft at angular speed \(\omega \) about an axis coming out of the page. A bright red laser beam enters from the center point on one wall of the room and strikes the mirror. As the mirror rotates, the reflected laser beam creates a red spot sweeping across the walls of the room.

(a) When the spot of light on the wall is at distance \(x \) from point \(O \), what is its speed? (Use the following as necessary: \(\omega, x, \) and \(L \)).

\[
A:\quad x = \frac{L}{2} + \tan \phi, \quad \phi = 180^\circ - 90^\circ - 2\theta
\]

\[
V = \frac{dx}{dt} = \frac{L}{2} \frac{d\phi}{dt} = \frac{L}{2} \frac{d\theta}{dt} = \frac{L}{2} \omega \cos \phi = \frac{L}{2} \omega \left(\frac{L^2}{2} + x^2 \right)^{-1/2}
\]

\[
V = \frac{\left(\frac{L^2}{2} + x^2 \right) 2 \omega}{L} = \frac{L x^2 + L^2}{L^2} \omega = \frac{L x^2 + L^2}{L^2} \omega
\]

(b) What value of \(x \) corresponds to the minimum value for the speed?

(c) What is the minimum value for the speed? (Use the following as necessary: \(\omega, x, \) and \(L \)).

(d) What is the maximum speed of the spot on the wall? (Use the following as necessary: \(\omega, x, \) and \(L \)).

(e) In what time interval does the spot change from its minimum to its maximum speed? (Use the following as necessary: \(\omega, x, \) and \(L \)).
Show all work!! Report all numbers to three (3) significant figures.

[35 pts.] A concave spherical mirror has a radius of curvature of magnitude 80 cm.

(a) Determine the object position for which the resulting image is UPRIGHT and larger than the object by a factor of 2.00.
(b) Draw a ray diagram to determine the position of the image.
(c) Is the image real or virtual?

(A) \(R = 80 \text{ cm} \) so \(f = \frac{R}{2} = +40 \text{ cm} \)

Mirror Formula

\[
\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}
\]

\[
\text{Magnification} = -\frac{d_i}{d_o} \quad \text{[Given } M = +2]\]

\[
2 = -\frac{d_i}{d_o} \Rightarrow d_i = -2d_o
\]

\[
\frac{1}{f_m} = \frac{1}{d_o} + \frac{1}{2d_o}
\]

\[
\Rightarrow \frac{1}{40} = \frac{1}{2d_o} \Rightarrow 2d_o = 40 \Rightarrow d_o = 20 \text{ cm } \text{ object-distance from the mirror.}
\]

Image Location

BEHIND THE MIRROR

(b) Image created is virtual & upright as it is formed "BEHIND" the mirror.
Show all work!! Report all numbers to three (3) significant figures.

[35 pts.] The object in the figure below is midway between the lens and the mirror, which are separated by a distance \(d = 40.0 \) cm. The magnitude of the mirror's radius of curvature is \(30.0 \) cm, and the lens has a focal length of \(-14.285 \) cm.

(a) Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system.

\[
\frac{1}{p} + \frac{1}{q} = \frac{2}{R} \quad \rightarrow \quad \frac{pR}{2p-R} = q \quad \rightarrow \quad \frac{20(30)}{20-30} = 60 \text{ cm} \quad \text{(real image, left side of mirror)}
\]

\(q \) becomes object (virtual) for lens

\[
\frac{1}{p} + \frac{1}{q'} = \frac{1}{f} \quad \rightarrow \quad q' = \frac{pf}{p-f} \quad \rightarrow \quad \frac{20(-14.285)}{-20+14.285} \rightarrow q = -50 \text{ cm} \quad \text{(right of lens)}
\]

Final image is \(-50+40 = -10 \) cm or \(10 \) cm right of mirror.

(b) Image is virtual (behind mirror)

(c) Overall magnification is \(\Theta \) so image is upright.

(d) \(M = M_1 M_2 \)

\[
M_1 = \frac{q}{p} = \frac{-60}{20} = -3 \quad \text{(1)}
\]

\[
M_2 = \frac{-q'}{p'} = \frac{50}{-10} = -5 \quad \text{(1)}
\]

\[
M = (-3)(-2.5) = 7.5 \quad \text{(1)}
\]