In the circuit shown the switch S is closed at t = 0.

4(a) Calculate the current in R_2 just after the switch is closed.
4(b) Calculate the current in R_2 a very long time after the switch is closed.
4(c) Calculate the voltage across the capacitor a very long time after S is closed.
13(d) Calculate the charge on the capacitor 125 μs after the switch is closed.

No short cuts learned in other classes allowed. Part (d) requires the full solution as discussed in class.

\[
\begin{align*}
\epsilon &= 125 \text{ V} \\
R_1 &= 150 \text{ } \Omega \\
R_2 &= 250 \text{ } \Omega \\
R_3 &= 250 \text{ } \Omega \\
C &= 1.65 \times 10^{-6} \text{ F}
\end{align*}
\]

\[
\begin{align*}
a) \quad I_1 &= \frac{\epsilon}{R_1 + R_2} = 0.455 \\
I_2 &= \frac{I_1}{2} = 0.227 \text{ A} \\
b) \quad I_2 &= \frac{\epsilon}{R_1 + R_2} = 0.313 \text{ A} \\
c) \quad V_C &= I_2 R_2 = 78.1 \text{ V}
\end{align*}
\]
1. \(\varepsilon - I_1 R_1 - I_2 R_2 = 0 \)
2. \(\varepsilon - I_1 R_1 - \frac{Q}{C} - I_3 R_3 = 0 \)
3. \(I_1 = I_2 + I_3 \)
4. \(I_3 = \frac{dQ}{dt} \)

\[
I_3 = \frac{dQ}{dt} = -\frac{Q}{(R_1 R_2 + R_1 R_3 + R_2 R_3) C} + A
\]

\[
Q = Q_\infty (1 - e^{-\frac{t}{\tau}})
\]

\[
= \left(\frac{\varepsilon R_2}{R_1 + R_3}\right) C (1 - e^{-\frac{t}{\tau}})
\]

\[
= 129 \times 10^{-6} (1 - 0.802)
\]

\[
Q = 2.55 \times 10^{-5} \, C
\]

\[\varepsilon = 7 = 567 \times 10^{-6}\]