Consider a long cylindrical non-conductor. The outside radius of the cylinder is \(R_0 \), and the charge distribution inside the cylinder is modeled by \(\rho = AR^2 \), where \(A \) is a constant and \(R \leq R_0 \) (artificial, but it keeps the math simple).

(a) Calculate the electric field at any interior point at a distance \(R \) from the center of the cylinder.
(b) Using \(V(R) = 0 \) at \(R = 0 \), find the value of the potential at a point \(R \) where \(R < R_0 \). The sign of \(V \) must be clearly stated for the case where the charge density is positive.
(c) Obtain a formula for \(A \) if the cylinder has a linear charge density of \(\lambda \, \text{C/m} \). What are the units of \(A \)?

\(a \) by Gauss' Theorem:

\[
|E| = \frac{1}{\varepsilon_0} \int_0^R Ar^2 \, dR = \frac{A R^3}{4 \varepsilon_0}
\]

\(\vec{E} \) directed outside.

\(b \)

\[
|V(R)| = \left| \int_0^R E(r) \, dr \right| = \frac{AR^4}{16 \varepsilon_0}
\]

Sign =

\(c \)

\[
\lambda \pi R_0^2 = \int_0^{R_0} Ar^2 \, 2\pi r \, dr = \frac{\pi}{2} AR_0^4
\]

\[
A = \frac{2\lambda}{\varepsilon_0 R_0^4}
\]

\[[A] = \frac{\text{C/m}}{\text{m}^2} = \text{C/m}^5 \]