Third Midterm

Name (print) M. Portnoi Name (signed) M.F.

Discussion Instructor (circle): Brown Chakhbazi Condelli Portnoi Zhukov

Discussion Section # 1

REPORT ALL NUMBERS TO THREE SIGNIFICANT FIGURES!
Use the conversion constants and data given on the front page.

(a) If all capacitors have the same value, C, calculate the effective capacitance between a and b.

\[
C = \frac{2C \cdot C}{2C + C} + \frac{C \cdot C}{C + C} = \frac{2}{3}C + \frac{C}{2} = \frac{7}{6}C
\]

(b) Silicon has an atomic mass of 28.0 and a density of 2.33 g/cm^3. If impurities are added so there is 1.00×10^5 charge carriers per atom, calculate the number of charge carriers per cm3.

\[
\nu = \frac{6.02 \times 10^{23}}{28.0} \cdot \frac{2.33}{10^{-5}} = 5.01 \times 10^{17} \frac{1}{\text{cm}^3}
\]

(c) A copper wire carries a current of 157 A. If the diameter of the wire is 2.00 mm, what is the current density?

\[
j = \frac{I}{\pi r^2} = \frac{157}{\pi \cdot (1.0 \times 10^{-3})^2} = 5.00 \times 10^4 \frac{\text{A}}{\text{m}^2}
\]

(d) If the current in (c) is carried by electrons and the drift velocity is $1.00 \times 10^4 \text{ m/s}$, what is the density of charge carriers?

\[
\nu = \frac{i}{(e \nu)} = \frac{5.10^4}{1.6 \times 10^{-19} \cdot 10^{-4}} = 3.12 \times 10^{30} \frac{1}{\text{m}^3}
\]

(e) If 60 volts is applied between A and B, calculate the charge on the 15 pF capacitor.

\[
Q = V \cdot \frac{C_1 \cdot C_2}{C_1 + C_2} = 60 \cdot \frac{10 \cdot 15}{25} \pm \sqrt{\frac{360}{C}} = 3.6 \times 10^{-10} \text{C}
\]