(b) \[\mathbf{E}_i = \mathbf{E}_0 \cos \theta \mathbf{i} \]

\[\mathbf{E}_0 = \frac{\mu_0 I}{2\pi r} \]

\[I = \frac{\mu_0 I}{2\pi} \]

\[\mathbf{E}_i = \frac{\mu_0 I}{2\pi} \cos \theta \mathbf{i} \]

Induced \(\mathbf{E} \) is counterclockwise.

(b) \[\frac{d\Phi}{dt} = \frac{\mu_0 I}{2\pi} \cos \theta \]

\[\mathbf{E}_i = \frac{\mu_0 I}{2\pi} \cos \theta \mathbf{i} \]

Since \(\Phi \) increases at \(t = 0 \)

(a) \[\mathbf{E}_i = \mathbf{E}_0 \mathbf{i} \]

(b) \[\mathbf{E}_i = \frac{\mu_0 I}{2\pi} \cos \theta \mathbf{i} \]

If the current in the wire is given by \(I = I_0 \sin \omega t \), calculate the current through the resistor \(R \) as a function of time. Assume the positive direction of the current in the wire as shown by the arrow, and that the positive current in the long wire has a constant value 1 (new situation).

Now the current in the rectangle is changed by changing the value of \(R \). Calculate the current in the resistor, including its sign using the convention in (a).