EXAM 5

Name: ______________________ unid: u ________

Discussion TA (circle): Justin Mahamadou Mike Will

REPORT ALL NUMBERS TO THREE SIGNIFICANT FIGURES!
Use the conversion constants and data given on the front page.

(a) Calculate the critical angle for total internal reflection for glass \(n = 1.55 \) immersed in water \(n = 1.33 \).

\[
\frac{n_1 \sin \theta_i}{n_2 \sin \theta_2} \quad \text{and} \quad \frac{n_1 \sin \theta_i}{n_2 \sin 90^\circ} = \frac{\sin \theta_c}{n_1} = 1.33 \quad \therefore \theta_c = \sin^{-1} \left(\frac{1.33}{1.55} \right) = 59.1^\circ
\]

(b) A concave spherical mirror has a radius of curvature of 1.20 m. Calculate the position of the image of an object 1.45 m away from the mirror.

\[
\text{Concave mirror has positive focal length } f = \frac{R}{2} \quad \therefore \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{f} \Rightarrow \frac{1}{1.45} + \frac{1}{q} = \frac{1}{0.6} \quad \therefore q = 1.02 \text{ m}
\]

(c) A soap film \(n = 1.33 \) is observed to show a reflection maximum in perpendicular incidence at a green wavelength of 525 nm. What is the minimum thickness of the soap film you can deduce from this data?

\[
\text{The light has a } 180^\circ \text{ phase change at the top of the film, but not when reflecting off the bottom. For constructive interference,} \quad t = \frac{\lambda}{4n} = \frac{525 \text{ nm}}{4(1.33)} = 98.7 \text{ nm}
\]

(d) Sunlight is incident on the physics parking lot with an intensity of 750 W/m². Calculate the maximum value of the magnetic field in this light beam.

\[
I = \frac{\lambda}{n} = \frac{c B_{\text{max}}^2}{2 \mu_0} \quad \therefore B_{\text{max}} = \sqrt{\frac{2 \mu_0 I}{c}} \quad \therefore B_{\text{max}} = \sqrt{\frac{2(4\pi \times 10^{-7}) \times 750}{3 \times 10^8}} = 2.51 \times 10^{-6} \text{ T}
\]

(e) A green laser has a wavelength of 525 nm. Calculate its wavelength in diamond \(n = 2.40 \).

\[
\lambda_n = \frac{\lambda_{\text{vacuum}}}{n} = \frac{525 \text{ nm}}{2.40} = 219 \text{ nm}
\]