Show all Work!! Circle your answer(s).

A capacitor and two resistors are connected to a battery as shown. The switch has been closed for a long time and then opened at \(t = 0 \). Given: \(V = 12.0 \text{ V}, C = 5.00 \mu\text{F} \) and \(R = 8.00 \times 10^3 \Omega \).

(a) [5 pts.] Calculate the current through the battery just before the switch is opened.

(b) [5 pts.] Calculate the charge on the capacitor just before the switch is opened.

(c) [5 pts.] Calculate the time constant \(\tau \) for discharging the capacitor after the switch is opened.

(d) [5 pts.] Calculate the charge on the capacitor as a function of time after the switch is opened.

\[Q(t) = Q_{\text{max}} e^{-t/\tau} \]

\[Q_{\text{max}} = 6 \times 10^{-5} \text{ C} \]

\[(t \leq 0.08 \text{ s}) \]
Show all Work!! Circle your answer(s).

An infinite straight wire has a uniform positive linear charge density \(\lambda \). Express all your answers in terms of \(r, \lambda, q \) and \(k_e \) or \(\varepsilon_0 \), as appropriate. You must show all work.

(a) \([10 \text{ pts.}] \) Draw the appropriate Gaussian surface for this situation and use Gauss's law to find the magnitude of the electric field at an arbitrary distance \(r \) from the wire. Sketch the direction of the electric field.

(b) \([7 \text{ pts.}] \) Calculate the potential difference \(\Delta V \) between two points located at distances \(r \) and \(2r \) from the wire.

(c) \([3 \text{ pts.}] \) How much energy is required to move a particle of positive charge \(q \) from the distance \(2r \) to \(r \)?

\[
(a) \quad \int \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{enc}}{\varepsilon_0} = \frac{\lambda l}{\varepsilon_0} \\
\Rightarrow \mathbf{E} \cdot 2\pi rl = \frac{\lambda l}{\varepsilon_0} \\
\Rightarrow \mathbf{E} = \frac{\lambda}{2\pi \varepsilon_0 r} \quad \text{Direction = Radially Outward}
\]

\[
(b) \quad \Delta V_{A \to B} = -\int_{r_A}^{r_B} \mathbf{E}(r) \cdot d\mathbf{r} = -\frac{\lambda}{2\pi \varepsilon_0} \ln \left[\frac{r_B}{r_A} \right] = -\frac{\lambda}{2\pi \varepsilon_0} \ln \left[\frac{2r}{r} \right] = -\frac{\lambda}{2\pi \varepsilon_0} \ln (2) \quad \text{with} \quad r_B = 2r, \quad r_A = r
\]

\[
(c) \quad \Delta W = q \Delta V = -q \frac{\lambda}{2\pi \varepsilon_0} \ln (2)
\]
Show all Work!! Circle your answer(s).

The switch S is initially in position a and stays in that position for a long time.

(a) [4 pts.] What is the current and voltage across the 2.0 Ω resistor?

Now the switch is thrown quickly from a to b.

(b) [4 pts.] What is the initial current in the inductor?

(c) [4 pts.] What is the voltage across each resistor?

(d) [4 pts.] What is the voltage across the inductor?

(e) [4 pts.] What is the time constant for discharging the inductor?

\[I = \frac{V}{R} = 6.0 \text{ A} \quad \text{as } t \to \infty \]

\[V_{ac} = 12 \text{ V} \]

\[I_L = \text{no discontinuity in current} \]

\[I_L = 6.0 \text{ A} \]

\[V_{2R} = R_{2R} I_L = 2 \cdot 6.0 = 12 \text{ V} \]

\[V_{1200} = R_{1200} I_L = (1200 \Omega)(6.0 \text{ A}) = 7200 \text{ V} \]

\[-V_{ac} + V_L - V_{1200} = 0 \quad \text{or} \quad V_L = I_L (R_{ac} + R_{1200}) \]

\[V_L = 7212 \text{ V} \]

\[T = \frac{1}{R_{eq}} \quad \text{resistors are in series so} \quad R_{eq} = R_{2R} + R_{1200} = 1202 \Omega \]

\[T = \frac{2 \text{ H}}{1202 \text{ Ω}} = 1.66 \times 10^{-3} \text{ s} \]
Show all Work!! Circle your answer(s).

The electric field in a laser beam of light has amplitude 5.00 V/m and wavelength 650 nm. The cross section area of the beam is 5.00 mm². Given: \(\mu_0/4\pi = 10^{-7} \text{Tm/A} \), \(\varepsilon_0 = 8.854 \times 10^{-12} \text{C}^2/\text{Nm}^2 \) and \(c = 2.998 \times 10^8 \text{m/s} \).

(a) [4 pts.] Calculate the frequency of the laser beam in Hz.

\(\nu = \frac{c}{\lambda} = \frac{4.615 \times 10^{14}}{650 \times 10^{-9}} \text{ Hz} \)

(b) [4 pts.] Calculate the amplitude of the magnetic field.

\(B_{\text{max}} = \frac{E_{\text{max}}}{c} = \frac{5 \text{ V/m}}{3 \times 10^8} = 1.67 \times 10^{-8} \text{T} \)

(c) [4 pts.] Calculate the intensity of the laser beam.

\(I = \frac{E_{\text{max}} B_{\text{max}}}{2 \mu_0} = \frac{5 \times 1.67 \times 10^{-8}}{2 \times 10^{-7}} = 0.033 \text{ W/m}^2 \)

(d) [4 pts.] What radiation pressure would this wave exert, if it were directed at normal incidence onto a surface that absorbs 100% of the laser beam?

\(\text{Pressure} = \frac{I}{c} = 1.1 \times 10^{-10} \text{ Pa} \)

(e) [4 pts.] How much energy will the laser beam transfer to that surface in two minutes?

\[
\begin{align*}
\text{Energy} &= \text{Power} \times \text{time} \\
&= I \cdot \text{Area} \cdot t \\
&= 0.033 \times 5 \times 10^{-6} \times 120 = 1.99 \times 10^{-5} \text{ J}
\end{align*}
\]
Show all Work!! Circle your answer(s).

A loop of wire in the shape of a rectangle of width w and length L and a long straight wire, located at a distance h from the loop and carrying a current I, lie on a tabletop as shown in the figure. The current is changing with time according to $I = at^2$, where a is a constant. Express all your answers in terms of w, L, h, a, t, r, and μ_0 as appropriate.

(a) [5 pts.] Find the magnitude and direction of the magnetic field due to the current I at an arbitrary distance r from the long wire as a function of time.

(b) [10 pts.] Find the magnetic flux through the loop due to the current I as a function of time.

(c) [5 pts.] Find the induced emf in the loop as a function of time.

\[\oint \mathbf{B} \cdot d\mathbf{A} = \oint \mathbf{B} \cdot d\mathbf{a} = \oint \frac{\mu_0 a t^2}{2\pi r} \, dA; \quad dA = L \, dr \]

\[= \frac{\mu_0 a t^2}{2\pi} \int \frac{L \, dr}{r} = \frac{\mu_0 a t^2}{2\pi} \ln \left(\frac{h+w}{w} \right) \]

\[\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \left(\frac{\mu_0 a t^2}{2\pi} \ln \left(\frac{h+w}{w} \right) \right) \]

\[= -\frac{2\pi \mu_0 a t L}{2\pi} \ln \left(\frac{h+w}{w} \right) \]