ENERGY CONSERVATION IN ELECTROMAGNETIC FIELDS

We now look at energy conservation in electromagnetic fields. We begin by considering the work done on moving charges by the fields. We have:

\[
\text{dW} = \vec{F} \cdot d\vec{r} = q(\vec{E} + \vec{v} \times \vec{B}) \cdot d\vec{r}
\]

Then

\[
\frac{\text{dW}}{dt} = P = q(\vec{E} + \vec{v} \times \vec{B}) \cdot \frac{d\vec{r}}{dt} = q\vec{E} \cdot \vec{v} + q(\vec{v} \times \vec{B}) \cdot \vec{v}
\]

But \(\vec{v} \times \vec{B} \) is perpendicular to \(\vec{v} \). Hence

\[
(\vec{v} \times \vec{B}) \cdot \vec{v} = 0
\]

Thus static \(\vec{B} \) fields do no work! Does this mean that \(\vec{B} \) fields never do work? No. A time dependent \(\vec{B} \) field will produce an electric field (by Faraday’s law) and the \(\vec{E} \) field will generally do work. If we now have a collection of charges we get:

\[
P = \sum_{i} q_{i} \vec{E} \cdot \vec{v}_{i}
\]

In the continuum limit this becomes:

\[
P = \int \vec{E} \cdot \vec{J} \, d\text{vol}
\]

(Recall that \(qv \rightarrow \text{Idl} \rightarrow k\text{dA} \rightarrow J\text{dvol} \) as the number of dimensions increases.) Hence the work/sec done by the fields in a volume \(V \) is:

\[
P = \int_{V} \vec{E} \cdot \vec{J} \, d\text{vol}
\]

We now use the Maxwell equation:

\[
\vec{v} \times \vec{H} = \vec{J} + \epsilon \frac{\partial \vec{E}}{\partial t} \rightarrow \vec{J} = \vec{v} \times \vec{H} - \frac{\partial \vec{D}}{\partial t}
\]

to get

\[
\int_{V} \vec{E} \cdot \vec{J} \, d\text{vol} = \int_{V} \vec{E} \left[\vec{v} \times \vec{H} - \frac{\partial \vec{D}}{\partial t} \right] \, d\text{vol}
\]
But

\[\nabla \cdot (\vec{E} \times \vec{H}) = (\nabla \times \vec{E}) \cdot \vec{H} - \vec{E} \cdot (\nabla \times \vec{H}) \]

\[\therefore \int_{\text{vol}} \vec{E} \cdot \vec{J} \, d\text{vol} = \int_{\text{vol}} \left[\vec{H} \cdot (\nabla \times \vec{E}) - \nabla \cdot (\vec{E} \times \vec{H}) - \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \right] \, d\text{vol} \]

\[= \int_{\text{vol}} \left[-\vec{H} \cdot \frac{\partial \vec{B}}{\partial t} - \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \right] \, d\text{vol} - \int_{\text{surf}} (\vec{E} \times \vec{H}) \cdot d\vec{S} \]

We know that

\[\int \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \, d\text{vol} \]

is the rate at which energy is going into the electric field. Similarly:

\[\int \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} \, d\text{vol} \]

is the rate at which energy is going into the magnetic field. Thus:

\[\int_{\text{vol}} \left[\vec{E} \cdot \vec{J} + \frac{dU_{\text{EM}}}{\partial t} \right] \, d\text{vol} = -\int_{\text{surf}} (\vec{E} \times \vec{H}) \cdot d\vec{S} \]

where \(U_{\text{EM}} \) is the electromagnetic field energy/volume. The left hand side is then the rate at which energy is appearing in the volume \(V \). Conservation of energy then requires that the right hand side be the rate at which energy is entering the volume. Thus we can interpret:

\[\vec{S} = \vec{E} \times \vec{H} \]

as the energy/sec/area carried by the electromagnetic field. \(\vec{S} \) is called the “Poynting Vector”.

As an example of its use consider a current \(I \) flowing through a resistor \(R \).
We know

\[I = \frac{V_{\text{in}} - V_{\text{out}}}{R} = \frac{\dot{E}L}{R} \]

The current will produce a magnetic field:

\[\vec{B} = \frac{\mu_0 I}{2\pi r} \hat{\theta} \]

directed as shown. Then:

\[\vec{S} = \vec{E} \times \frac{\vec{B}}{\mu_0} = \frac{RI}{L} \hat{z} \times \frac{\mu_0 I}{2\pi\mu_0} \hat{\theta} = -\hat{r} \frac{RI^2}{2\pi L} \]

Thus the energy entering the resistor/sec is:

\[S2\pi rL = I^2 R \]

as expected!