A. Single-layer graphene is a two-dimensional gapless semiconductor with mirror symmetry of conduction and valence bands (Fig. 1). The dispersion law, which is the dependence of electron energy, ε, on momentum, \vec{p}, is linear, $\varepsilon = |\vec{p}| v$. At zero temperature, $T = 0$, the conduction band is empty, while the valence band is completely occupied.

1. With accuracy of a numeric coefficient find the concentrations of electrons and holes at finite temperature T.
2. Find the average electron energy and the specific heat.

B. In typical three dimensional gapless semiconductor the dispersion laws for electrons and holes are quadratic:

$$\varepsilon_e = \frac{p^2}{2m_e}, \quad \varepsilon_h = -\frac{p^2}{2m_h}.$$

The hole mass is much bigger than the electron mass $m_h \gg m_e$. Using this fact, perform the same calculations 1 and 2 as in part A.
Solution Part I

Density of electron states
\[g_e(\varepsilon) = 2 \int \frac{d^2p}{(2\pi \hbar)^2} \delta(\varepsilon - \varepsilon(p)) = \frac{\varepsilon}{\pi \hbar^2} \]

Concentrations of electrons and holes are equal. Due to the symmetry of conduction and valence bands, the Fermi level is zero, \(\mu = 0 \), at any \(T \).

Electron concentration \[n_e = \int d\varepsilon \frac{g_e(\varepsilon)}{e^{\varepsilon/T} + 1} = \frac{T^2}{\pi(\hbar T)^2} \int_0^\infty \frac{dz}{e^{z/T} + 1} \]

Thus, \(n_e \propto T^2 \)

The average electron energy \[\bar{E} = \int_0^\infty d\varepsilon \frac{\varepsilon g_e(\varepsilon)}{e^{\varepsilon/T} + 1} = \frac{T^3}{\pi(\hbar T)^2} \int_0^\infty \frac{dz z^2}{e^{z/T} + 1} \]

Thus, the specific heat is proportional to \(T^2 \).

Part II \[g_e(\varepsilon) = 2 \int \frac{d^2p}{(2\pi \hbar)^2} \delta(\varepsilon - \varepsilon(p)) = \frac{(2m_e)^{3/2}}{2\pi^2 \hbar^3} \sqrt{\varepsilon} \]

The density of the hole states is determined from the electroneutrality condition
\[\int_0^\infty d\varepsilon \frac{g_e(\varepsilon)}{e^{\varepsilon/T} + 1} = \int_0^\infty d\varepsilon \frac{g_h(\varepsilon)}{e^{\varepsilon/\mu T} + 1} \]

Thus \(\mu \gg T \), so that the left-hand-side is \(\frac{2}{3} \mu^{3/2} \), while the right-hand-side is \((m_e h T)^{3/2} \sqrt{\pi} e^{\mu/\mu T} \). Therefore \(\mu \approx \frac{2}{3} T \ln\left(\frac{m_e h T}{m_e}\right) \) and \(n_e \propto T^{3/2} \)