A. Two particles with masses m_1 and m_2 attract each other with a gravitational force. At time $t = 0$ both particles are at rest in positions $x = x_1$ and $x = x_2$, respectively (Fig. 1). Find the time, T, after which the particle will stick together. Find the coordinate of the point at which they will meet.

B. Replace the particles with two sticks of length, L (Fig. 2) Sketch the gravitational force, F, between the sticks as a function of separation, $x_2 - x_1$. Find F in the limits $L << x_2 - x_1$, and $L >> x_2 - x_1$. For the latter limit estimate the time, T.
Solution Part I

The center of mass remains at rest as the particles move. They will meet at
\[x = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \]

Equation of motion for the relative coordinate \(r \), reads \(\ddot{r} = \frac{F}{m} \), where
\[m = \frac{m_1 m_2}{m_1 + m_2} \]
and
\[F = G \frac{m_1 m_2}{r^2} \]

Energy conservation
\[\frac{\dot{r}^2}{2} - \frac{C}{r} = -\frac{C}{r_0} \]

where
\[r_0 = X_2 - X_1 \]

Estimate for \(T \):
\[\frac{\dot{r}^2}{2} \sim \frac{C}{r_0} \]

\[T_0 = \left(\frac{m r_0^3}{C} \right)^{1/2} = \frac{r_0^{3/2}}{\left[G(m_1 + m_2) \right]^{1/2}} \]

\[r_2 = \frac{r_0 Z}{\sqrt{1 - Z}} \]

\[\tau = \frac{\pi}{2\sqrt{2}} \]

\[T = \frac{\pi}{2\sqrt{2}} T_0 = \frac{\pi}{2\sqrt{2}} \frac{r_0^{3/2}}{\left[G(m_1 + m_2) \right]^{1/2}} \]

Part II

\[F = \frac{G m_1 m_2}{r^2} \]

\[\frac{\dot{r}^2}{2} \sim \frac{C}{L} \]

\[T_0 = \left(\frac{m r_0^2 L}{C} \right)^{1/2} \]