Shown in Fig. 1 is the cross section of a conductor infinite in the z-direction and carrying a current, I (current flows in the dashed area). Assuming that $d \ll b \ll a$, find the magnitude and direction of the magnetic field created by the current at points M_1, M_2, and M_3, and at the coordinate origin.

Point coordinates:

- M_1: $y = 0$, $x = a + x_1$, where $b \ll x_1 \ll a$
- M_2: $y = 0$, $x = a + x_2$, where $x_2 >> a$
- M_3: $x = 0$, $y = b + y_3$, where $y_3 \ll b$

Fig. 1
Solution

General relation: \(\int \vec{B} \cdot d\vec{l} = \frac{4\pi}{c} I_l \)

where \(I_l \) is the current \(l \) flowing through the contour \(\vec{l} \). The field at the origin is zero from symmetry. For point \(M_3 \) we choose a contour \(l \):

\[I_l = \frac{I l}{4b + 4a} \rightarrow 2B l = \frac{4\pi}{c} \frac{I l}{4b + 4a} \]

\[B = \frac{\pi I}{M_3 c (2b + 2a)} \]

does not depend on \(y \) and is parallel to \(x \)-axis. For point \(M_2 \) we choose a contour, which is a circle with radius, \(a + x_2 \):

Then \(B = \frac{2\pi (a + x_2)}{M_2} \)

\[B = \frac{2I}{c (a + x_2)} \]

parallel to the \(y \)-axis

For point \(M_1 \) we notice that elementary cross section \(dx \) creates magnetic field \(dB \):

\[dB = \frac{2I}{c (b + a)} \left(\frac{2I}{4b + 4a} \right) dx \]

Then

\[B = \frac{I}{M_2 c (b + a)} \int_{x_1}^{x_1 + 2a} \frac{dx}{x} = \frac{I}{c (b + a)} \ln \left(\frac{x_1 + 2a}{x_1} \right) \]