The Measurement of The Rydberg Constant

By Alex Gibbs
In 1913, Niels Bohr proposed his “Bohr Model”; a working model of the hydrogen atom.

Supported his model by deriving the Rydberg Formula: \(\frac{1}{\lambda} = R \left[(\frac{1}{n_f^2}) - (\frac{1}{n_i^2}) \right] \)

What is the Rydberg Constant R?
Theoretical Derivation of Rydberg Formula

- Electron contained in orbit around nucleus by a balance between Centripetal and Coulomb Forces:

\[
\left(\frac{1}{4\pi \varepsilon_0}\right)\left(\frac{e^2}{r_n^2}\right) = \frac{m_e v_n^2}{r_n}
\] \hspace{1cm} (1)

- Angular momentum \(L = m_e v_n r_n \) is quantized and is an integral multiple of \(\frac{\hbar}{2\pi} \) so:

\[
m_e v_n r_n = n\left(\frac{\hbar}{2\pi}\right)
\] \hspace{1cm} (2)

- Solving Equations (1) and (2) gives:

\[
r_n = \varepsilon_0 \left(\frac{n^2 \hbar^2}{\pi m_e e^2}\right) \quad \text{and} \quad v_n = \left(\frac{1}{\varepsilon_0}\right)\left(\frac{e^2}{2\hbar}\right)
\]
Theory Continued

- In the Bohr Model Total energy is equal to Kinetic energy plus Potential energy:

\[E_n = KE_n + PE_n = \left(\frac{1}{2} \right) m_e v_n^2 + \left(-\frac{1}{4\pi \varepsilon_0} \right) \left(\frac{e^2}{r_n} \right) = \left(\frac{1}{\varepsilon_0} \right) \left(\frac{m_e e^4}{8n^2 h^2} \right) - \left(\frac{1}{\varepsilon_0} \right) \left(\frac{m_e e^4}{4n^2 h^2} \right) \]

- Which reduces to:

\[E_n = -\left(\frac{1}{\varepsilon_0} \right) \left(\frac{m_e e^4}{8n^2 h^2} \right) \]

- Since the principle quantum number \(n \) characterizes the orbit, the energy change due to orbit transitions is:

\[\Delta E = E_i - E_f = \left(\frac{m_e e^4}{8\varepsilon_0^2 h^2} \right) \left[\left(\frac{1}{n_f^2} \right) - \left(\frac{1}{n_i^2} \right) \right] \]

- Where the Rydberg Constant is:

\[R_H = \left(\frac{m_e e^4}{8\varepsilon_0^2 h^2} \right) = 1.09 \times 10^7 \text{ m}^{-1} \]
Experimental Methods

- A Hydrogen Discharge lamp is used to excite atoms to make transitions between energy states producing light.
- The light is collimated and sent through a diffraction grating.
- The diffraction grating separates the light into its spectrum.
- A telescope is attached to view the spectrum and measure the angle of diffraction.
Plan of Analysis

- Calibration of apparatus
- Hydrogen Visible Wavelengths Derivation
- Rydberg Constant Derivation
Calibration

- A good calibration is crucial when conducting this experiment with this apparatus.
- Diffraction angles are a “finger print” of the element so must be correct and not distorted.
- Good calibration is achieved when diffraction angles are symmetric about $\theta_f = 0$.
- Calibration is done using mercury lamp of known wavelength: λ (green) = 5460.74 Å.
Calibration Data

<table>
<thead>
<tr>
<th>n</th>
<th>Θr(bad)</th>
<th>Θr(ok)</th>
<th>Θr(good)</th>
<th>n*λ (angstoms)</th>
<th>sin[Θr(bad)]</th>
<th>sin[Θr(ok)]</th>
<th>sin[Θr(good)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.2±0.1</td>
<td>9.2±0.1</td>
<td>9.5±0.1</td>
<td>5460.74</td>
<td>0.16</td>
<td>0.165</td>
<td>0.165</td>
</tr>
<tr>
<td>2</td>
<td>19.0±0.1</td>
<td>19.3±0.1</td>
<td>19.3±0.1</td>
<td>10921.5</td>
<td>0.326</td>
<td>0.331</td>
<td>0.331</td>
</tr>
<tr>
<td>3</td>
<td>29.4±0.1</td>
<td>29.6±0.1</td>
<td>29.7±0.1</td>
<td>16382.2</td>
<td>0.491</td>
<td>0.494</td>
<td>0.495</td>
</tr>
<tr>
<td>4</td>
<td>46.1±0.1</td>
<td>51.3±0.1</td>
<td>45.0±0.1</td>
<td>21843</td>
<td>0.721</td>
<td>0.78</td>
<td>0.707</td>
</tr>
<tr>
<td>-1</td>
<td>-9.4±0.1</td>
<td>-9.5±0.1</td>
<td>-9.5±0.1</td>
<td>-5460.74</td>
<td>-0.163</td>
<td>-0.165</td>
<td>-0.165</td>
</tr>
<tr>
<td>-2</td>
<td>-20.5±0.1</td>
<td>-19.4±0.1</td>
<td>-19.4±0.1</td>
<td>-10921.5</td>
<td>-0.35</td>
<td>-0.332</td>
<td>-0.332</td>
</tr>
<tr>
<td>-3</td>
<td>-36.2±0.1</td>
<td>-29.8±0.1</td>
<td>-29.8±0.1</td>
<td>-16382.2</td>
<td>-0.591</td>
<td>-0.497</td>
<td>-0.497</td>
</tr>
<tr>
<td>-4</td>
<td>-58.9±0.1</td>
<td>-41.5±0.1</td>
<td>-41.5±0.1</td>
<td>-21843</td>
<td>-0.856</td>
<td>-0.663</td>
<td>-0.663</td>
</tr>
</tbody>
</table>
Determination of Visible Wavelengths

- Measure Θ_r at $n = \pm 1, \pm 2, \pm 3$ for the visible hydrogen wavelengths H(red), H(blue) and H(purple)
- Make a linear least squares fit from the data pairs
- Extract values of wavelengths from the slopes of the graphs
- λ(red) = 665 ± 21 nm,
- λ(blue) = 462 ± 9 nm,
- λ(purple) = 432 ± 4 nm
Determination of Rydberg Constant

- Make a linear least squares fit of the data pairs:
 \[\left(\frac{1}{n^2} \right) - \left(\frac{1}{2^2} \right) = \frac{1}{\lambda} = (x, y) \]
- Determine Rydberg Constant from slope.
- Best Fit gives:
 \[R_H = 1.17 \times 10^7 \pm 0.03 \text{ m}^{-1} \]
Final Result & Discussion

- Ok agreement between experimental and expected data. $x^2 = 2.5$
- Corresponds to a percentage probability of 8.2%.
- Greater than 5% level but not by much.
- 7.5% error relative to theoretical value.
Conclusion

- The hydrogen spectrometer can be used to obtain an ok value of the Rydberg constant,
 \[R_H = 1.17 \times 10^7 \pm 0.03 \text{ m}^{-1} \]

- Further calibration can lead to a Really Good value for the Rydberg constant: Bad Calibration gives:
 \[R_H = 1.21 \times 10^7 \pm 0.05 \text{ m}^{-1} \]
 2.4% improvement in accuracy