Energy Deposition

• Critical for experimentation. How do we
 - Detect
 - Identify
 - Determine properties of elementary particles?

• In practice, although we may be studying the **strong** or **weak** nuclear force, we detect elementary particles most directly through **electromagnetic** interactions.
Major Energy Deposit Mechanisms

- **Charged particles**
 - Ionization
 - Bremsstrahlung

- **Photons**
 - Photoelectric Effect
 - Compton Scattering
 - Pair Production
Cosmic Radiation and “Air Showers”

- Primary cosmic rays consist primarily of protons and heavier atomic nuclei (< 1% electrons, gammas...)
- The primary cosmic rays interact in the upper atmosphere to produce large “showers” of secondary particles.
- Secondaries (largely “muons”) reach Earth.
- How do we study these muons?
Stopping Power in Ionization Regime

\[S = -\frac{dE}{dx} = n_{ion} \bar{I} \]

- Stopping power
- Energy loss per unit length
- Electron-ion pairs per unit length
- "Mean" ionization energy
Bethe-Bloch Equation

\[S = \frac{4\pi Q e^2 n Z}{m_e \beta^2 c^2} \ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{\bar{I}} \right) - \beta^2 \]

- **Charge of particle**
- **Atomic charge of material**
- **Electron mass**

\(n = \text{number of atoms of material per unit volume} \)
Bethe-Bloch Equation

\[S = \frac{4\pi Q e^2 n Z}{m_e \beta^2 c^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I} \right) - \beta^2 \right] \]

Nonrelativistic case; e.g. nuclear alpha particles
Relativistic Behavior of Bethe-Bloch
The graph illustrates the stopping power of a muon on copper (μ^+ on Cu) as a function of the Bethe range ($\beta\gamma$) and muon momentum. The graph shows different processes including nuclear losses, radiative losses, and radiative effects reaching 1%. The stopping power is measured in units of MeV cm2/g. The graph also distinguishes between Bethe and radiative effects.

Source: pdg.lbl.gov
Bremsstrahlung

- “Braking Radiation” (German)
- Classically; accelerated charge radiates
 - Electrons (light) radiate most
 - Heavier charges do too
- Quantum mechanically;
Radiation Length

\[S_{\text{tot}} = S_{\text{ion}} + S_{\text{rad}} \]

\[S_{\text{rad}} = -\left(\frac{dE}{dx} \right)_{\text{rad}} = \frac{4nZ^2\alpha^3(\hbar c)^2}{m^2c^4} E \ln \left(\frac{183}{Z^{1/3}} \right) \]

\[\rightarrow \text{Since} \quad -\left(\frac{dE}{dx} \right)_{\text{rad}} = \text{constant} \times E \]

\[= \frac{1}{L_R} E \]

\[\text{We have...} \quad E = E_0 e^{-x/L_R} \]
Radiation Lengths

<table>
<thead>
<tr>
<th>Element</th>
<th>Z</th>
<th>L_R (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>866</td>
</tr>
<tr>
<td>He</td>
<td>2</td>
<td>754</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Al</td>
<td>13</td>
<td>8.9</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>1.76</td>
</tr>
<tr>
<td>Pb</td>
<td>82</td>
<td>0.56</td>
</tr>
<tr>
<td>U</td>
<td>92</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Photon Interactions

- Photoelectric Effect
- Compton Scattering
- Pair production

Energy increasing
Photoelectric Effect

- Dominates at energies few eV to few keV
- Knock atomic electrons out of orbit
- Evidence for photons
- Detector possibilities...
Photoelectric Effect

- Dominates at energies few eV to few keV
- Knock atomic electrons out of orbit
- Evidence for photons
- Detector possibilities...
Photomultiplier Tube

Figure 1

- Incoming Photon
- Photocathode
- Window
- Dynodes
- Anode
- Focusing Electrode
- Voltage Dropping Resistors
- Power Supply
- Output Meter
Compton Scattering

• Photon energy \gg atomic binding energies
• Effectively scattering off of “free” electrons

$$\lambda_f - \lambda_i = \Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$
Pair Production

- Possible once $E_\gamma > 2 \times m_e$