Bipolar Junction Transistors

Recall diodes

\[\text{P} \quad \text{n} \]

\[\text{I} \quad \text{I} \]

current flows on forward biasing

\[\text{I} \quad \text{I} \]

Transistor is like a diode with another junction added
- middle part is very thick

Two types

\[\text{P} \quad \text{n} \quad \text{p} \]
\[\text{n} \quad \text{p} \quad \text{n} \]

Three leads: Emitter, Base, Collector

Arrow goes on the emitter!
Basic operation

1. Forward bias EB "diode"
2. Emitter then emits charges which are collected by collector

- Current flows from E → C
 (or C → E for npn)
- Current flows in direction of arrow

Nomenclature

\[V_E, V_B, V_C \] voltage at lead

\[V_{EB}, V_{BE}, V_{BC}, V_{EC} \] voltage difference

\[V_{EB} = V_E - V_B \]

\[V_{EE}, V_{BB}, V_{CC} \] power supply voltage to lead (through resistor)
Applications
- Switches
- Amplifiers
- Variable resistors
- Impedence changing
- Current source

First Model

1. Forward bias \(E_B \) \(V_{EB} = 0.6 \text{ V} \) (pnp)
 \(V_{EB} = -0.6 \text{ V} \) (nnp)

2. \(I_C = I_E \) (\(I_C = \alpha I_E \), \(\alpha \leq 1 \))

Second Model

1. Forward bias \(E_B \) \(V_{BE} = 0.6 \text{ V} \)

2. \(I_C = \beta I_B \), \(25 \beta \leq 250 \)
 Small \(I_B \) controls large \(I_C \)
Watch out for β!
- Depends on I_B
- Depends on T
- Depends on doping details (varies from one sample to the next)

Characteristic Curves

I_C vs. V_{EB}

$(I_C \neq I_E$ so I_E like a diode $)$

Show slide

I_C vs. V_{EC}

- Active
- Saturation
- Cutoff
- $V_{EC} > 0.2$, $I_C = \beta I_B$
- I_C independent (ish) of V_{EC}
- Cutoff
 - $V_{EB} < 0.6 V$, $I_C = 0$
- Saturation
 - $V_{EC} = 0.2$, $V_{RR} = 0.6 V$

Questions
Another use of transistor-as-switch

NOT Gate

\[V_{cc} = +5 \text{ V} \]

\[2k\Omega \]

\[20k \]

\[V_{in} \rightarrow V_{out} \]

1. \(V_{in} < 0.4 \text{ V} \) **Cutoff**, transistor **OFF**

 \[V_{out} = V_{cc} = 5 \text{ V} \]

2. \(V_{in} = 5 \text{ V} \) **Saturation**, transistor **ON**

 \[V_{out} = 0.2 \text{ V} \]

NOR Gate

\[V_{cc} \]

\[V_{1} \rightarrow V_{2} \rightarrow V_{out} \]

\[V_{EE} = 0 \]
Load Line Analysis

\[V_C = 7.5 \text{ V} \]

- \(I_B = 40 \mu \text{A}, \quad V_C = 8.6, \quad I_C = 6.3 \text{ mA} \)
- \(I_B = 50 \mu \text{A}, \quad V_C = 6.8, \quad I_C = 8.1 \text{ mA} \)

\[\beta_{re} = \frac{\Delta I_C}{\Delta I_B} \bigg|_{I_B = 45} = 180 \]

So the transistor works as an amplifier!

Small changes in \(i_B (V_B) \) result in large changes in \((V_{out})(v) \)

But!

Need to bias input
Blasing Circuits

Fixed Bias

\[i_B = \frac{V_C - 0.6}{R_B} \]

Voltage Divider Bias (Fixed)

Problems

1) Amplification depends directly on \(\beta \)
 (and \(\beta \) is variable)

2) Thermal runaway

\[I_C = I_C_0 (e^{\frac{V_T}{4}} - 1) \]

\(I_C_0 \) increases with temperature
\(I_C \) dissipates heat raising temp
dissipating more heat, etc.
Non-Fixed Biasing

\[i_B = \frac{V_{CB}}{R_B} \]

\[V_{OB} = 0.6 \approx V_c - 0.6 \]

\[V_{CC} - V_c = (\frac{V_c - V_c}{1 + \beta})R_c = V_{OUT} \]

\[V_{CC} - V_c = \frac{(\beta + 1)V_B}{R_B} = V_{CC} - V_{OUT} \]

\[= \frac{(\beta + 1)(V_{OUT} - 0.6)R_c}{R_B} = V_{CC} - V_{OUT} \]

\[(1 + \frac{\beta + 1}{R_B R_c})V_{OUT} = (1 + \frac{0.6(\beta + 1)}{V_c R_B})V_c \]

\[V_{OUT} = \frac{1 + \frac{0.6(\beta + 1)}{V_c R_B}}{1 + (\beta + 1)} V_c \]

\[\approx \frac{1 + 0.6}{\beta} V_c \]

\[\approx \left(\frac{0.6}{V_c} + \frac{1}{\beta} \right) V_c \]
\[i_B = \frac{V_{CB}}{R_B} = \frac{i_C}{\beta} \]

\[V_C = V_{cc} - \frac{(1+\beta)i_B R_C}{R_B} \]

\[V_{CB} = V_C - V_B = V_C - V_{BE} \]

\[i_B = \frac{V_{CB}}{R_B} = \frac{V_C - V_{BE}}{R_B} = \frac{V_{cc} - (1+\beta)i_B R_C - V_{BE}}{R_B} \]

\[i_B R_B = V_C - V_{BE} - (1+\beta)i_B R_C \]

\[(R_B + (1+\beta)R_C)i_B = V_C - V_{BE} \]

\[i_B = \frac{V_C - V_{BE}}{R_B + (1+\beta)R_C} \]

\[\frac{di_B}{d\beta} = -\frac{i_B}{(R_B + (1+\beta)R_C)} \cdot R_C \]
Self Biasing

\[i_B = \frac{V_{BB} - V_{BE}}{R_B + (1+\beta)R_E} \]

Biasing Circuit Design

(Guiescent Point of Amplifier)

1. Determine \(I_{CQ} \) (= \(I_{EQ} \))

 (horizontal line on \(I_C \) vs \(V_{CE} \))

2. Determine \(V_{CC} \) (12V supply)

3. Pick \(V_E = \frac{1}{10} V_{CC} \)

 \(R_E = \frac{1}{10} \frac{V_{CC}}{I_{CQ}} \)

 Thermal Stability, Gain
 \(\beta \) variability

4. Determine \(V_B \)

 \(V_{BE} = 0.7 \) V (0.3 for Ge)

 \(V_B = V_E + V_{BE} \)

5. Pick output voltage divider current

 \(I_2 = \frac{1}{10} I_C \)
(3) Follows from 1/10th rule of input & output impedances
with \(\beta = 100 \), don't have to account for \(I_B \)!

(6) Calculate \(R_2 \)
\[V_B = I_{12} \cdot R_2 \]

(7) Calculate \(R_1 \)
\[(V_{CC} - V_B) = I_{12} \cdot R_1 \]

(8) Pick \(V_c = \frac{V_{CC}}{2} \)

(9) Calculate \(R_c = \)
\[V_{CC} - V_c = \frac{I_c}{R_c} = \frac{V_{CC}}{2} \]