Problem 1. (10 points) A particle of 10^{-5} g moving with a speed of 10^{-1} cm/s is confined in a box 1 mm in length. Treat this as a one-dimensional infinite square well, calculate the approximate value of the quantum number n? In the ground state, calculate the speed of the particle?

Problem 2. (10 points) An electron moving in a one-dimensional infinite square well of length L is trapped in the $n = 3$ state. Find the probability of finding the electron within the “volume element” $\Delta x = 0.01$ L at $x = L/2$.

Problem 3. (10 points) A proton is in the ground state with energy E_n of a one-dimensional infinite well with $L = 10^{-10}$ m. Compute the force that the proton exerts on the wall during an impact on either wall. (Hint: $F = -dE_n/dL$). How does this result compare with the weight of a proton at the surface of Earth?

Problem 4. (10 points) Sketch (a) the wave function and (b) the probability distribution for the $n = 6$ state for the finite square well potential.

Problem 5. (20 points) Find (a) $<x>$; (b) $<x^2>$; (c) $<p>$, and (d) $<p^2>$ for the first excited state ($n = 2$) in an infinite square well potential.