P55

(a) What is the resultant force exerted by the two cables?

\[T_1 = 60.0 \text{ N} \]
\[T_2 = 60.0 \text{ N} \]

\[\overrightarrow{R} = \overrightarrow{T_1} + \overrightarrow{T_2} \quad \text{resultant force} \]

\[\begin{align*}
R_x &= T_1 \cos(135^\circ) + T_2 \cos 45^\circ \\
&= -T_1 \cos 45^\circ + T_2 \cos 45^\circ \\
&= 0 \quad \text{because} \ T_1 = T_2
\end{align*} \]

\[R_y = T_1 \sin(135^\circ) + T_2 \sin 45^\circ \\
&= T_1 \sin 45^\circ + T_2 \sin 45^\circ \\
&= 2 \times 60.0 \text{ N} \times \sin 45^\circ \\
&= 84.85 \text{ N} \]

\[R = \sqrt{R_x^2 + R_y^2} = R_y = 84.85 \text{ N} \]

\(R \) is in the \(y \) direction (in direction of \(R_y \)).

(b) What is the weight of the light?

Equilibrium \(\Rightarrow \Sigma F_y = 0 \)

\[R_y - mg = 0 \]

\(\Rightarrow \quad mg = R_y = 84.85 \text{ N} \)

mg acts downward.
Ch 4

P 57

$v_0 = 7.0 \text{ m/s}$

$\mu_k = 0.050$

$m g = 600 \text{ N}$

How far to come to rest?

Newton's second law:

1. $\Sigma F_y = m a_y = 0 \quad (a_y = 0)$
2. $\Sigma F_x = m a_x \quad (a_x \text{ due to friction, slowing down})$

1. \[n - m g = 0 \]
2. \[-\mu_k n = m a_x \quad \text{using the fact} \quad F = \mu_k n \]

1 & 2 \Rightarrow \quad -\mu_k m g = m a_x

\[a_x = -\mu_k g = -0.050 \times 9.8 \text{ m/s}^2 \]

\[a_x = -0.49 \text{ m/s}^2 \]

Now solve for distance Δx

\[v^2 = v_0^2 + 2a \Delta x \]

\[0 = v_0^2 + 2a \Delta x \]

\[\Delta x = -\frac{v_0^2}{2a} \]

\[\Delta x = -\frac{(7.0)^2}{2 \times 0.49} = \frac{50.0 \text{ m}}{} \]
Two boxes:

\[m_1 = 10 \text{ kg} \quad m_2 = 20 \text{ kg} \]

on frictionless surface, light string, no applied force:

\[F = 50 \text{ N} \]

(a) acceleration? tension?

\[F = m_1 a = (m_1 + m_2) a \]

\[a = \frac{F}{m_1 + m_2} = \frac{50 \text{ N}}{30 \text{ kg}} = 1.67 \text{ m/s}^2 \]

\[\text{to find } T \text{ consider } m_1:\]

\[T = m_1 a \]

\[T = 10 \times 1.67 = 16.7 \text{ N} \]

(b) Repeat with friction \(\mu_k = 0.10 \)

\[\Sigma F = m_1 a = (m_1 + m_2) a \]

\[F - f_1 - f_2 = (m_1 + m_2) a \]

\[F - \mu_k (m_1 + m_2) g = (m_1 + m_2) a \]

\[\therefore a = \frac{F}{m_1 + m_2} - \mu_k g \]

\[= 1.67 - 0.98 = 0.69 \text{ m/s}^2 \]

Find \(T \):

\[T - f_1 = m_1 a \]

\[T = f_1 + m_1 a \]

\[= \mu_k m_1 g + m_1 a \]

\[= 10 \text{ kg} \times (0.1 \times 9.8 + 0.69) = 16.7 \text{ N} \]
Ch 4
P67

2 people pull on a boat

\[m = 200 \text{ kg} \]

\[a_s = 1.52 \text{ m/s}^2 \text{ to the right} \]

\[a_o = 0.518 \text{ m/s}^2 \text{ to the left} \]

what are the forces exerted by each person?

Newton 2nd law \(\Sigma F = ma \)

\[F_1 + F_2 = ma_s = 304 \text{ N} \] \(\text{(1)} \)

\[F_1 - F_2 = ma_o = -103.6 \text{ N} \] \(\text{(2)} \)

Add \(\text{(2)} \) to \(\text{(1)} \):

\[2F_1 = 304 - 103.6 \]

\[F_1 = 160.2 \text{ N} \]

Subtract \(\text{(2)} \) from \(\text{(1)} \):

\[2F_2 = 304 + 103.6 \]

\[F_2 = 203.8 \text{ N} \]