\[\psi'^A(x) = \langle \hat{x}, A | \hat{U} | \psi \rangle = U_B^A \psi^B(R(-\varphi^2) \hat{x}). \]

Magnetic Moment of Spin \(\frac{1}{2} \) Particles

Orbital Magnetic Moment

\[I = \frac{e}{\eta^2} = \frac{e}{2\pi^2} \frac{1}{\nu} = \frac{eU}{2\pi^2} \]

Total Current

\[\mu = \frac{I}{c} \Sigma = \frac{1}{c} \frac{eU}{2\pi^2} \nu \pi^2 \]

Magnetic Moment of the Electric Loop

\[\vec{\mu} = \frac{e}{2mc} \vec{L} \]

relates the magnetic moment to the angular momentum of a particle in orbital motion.

For \(e > 0 \), \(\vec{\mu} \parallel \vec{L} \),

for \(e < 0 \), \(\vec{\mu} \perp \vec{L} \).
In quantum theory, \(\hat{\mu} \) is quantized and hence \(\hat{\mu} \) is also quantized:

\[
\hat{\mu} = \frac{e}{2mc} \hat{\mathbf{e}} = \frac{1e\hbar}{2mc} (\text{sign} e) \frac{\hat{\mathbf{e}}}{\hbar}
\]

For the eigenvalues

\[
\mu_3 = \frac{|e|\hbar}{2mc} (\text{sign} e) m
\]

\[
\downarrow \quad \text{mass}
\]

\[
\text{MAGNETON of a particle}
\]

\[
\text{magnetic quantum number} \quad \ell = 0, \pm 1, \ldots, \pm \ell
\]

For an electron, \(\mu_B = \frac{1e\hbar}{2mc} \) is called Bohr's magneton.

INTRINSIC MAGNETIC MOMENT OF AN ELECTRON

Experiments show that electrons have an intrinsic magnetic moment which is again proportional to the intrinsic angular momentum (the spin) of the electron:

\[
\hat{\mu} = -2\mu_B \hat{\mathbf{s}} = -\mu_B \frac{\hat{\mathbf{s}}}{\hbar}
\]

\[
\downarrow 9 \quad \text{GYROMAGNETIC RATIO}
\]
For an electron, $e < 0$, the intrinsic magnetic moment is antiparallel to the spin. Dirac's relativistic Theory of the electron explains the factor 2.

INTRINSIC MAGNETIC MOMENT OF NUCLEONS

For nucleons, the magnetic moment is customarily measured in nuclear magnetons

\[
\mu_N = \frac{1e\hbar}{2mp_c} \quad (mp \text{ mass of the proton}).
\]

For a proton

\[
\mu = 5.59 \frac{1e\hbar}{2mp_c} \hat{\text{A}}_{\parallel g \text{ (proton)}}
\]

For a neutron

\[
\mu = -3.83 \frac{1e\hbar}{2mp_c} \hat{\text{A}}_{\parallel g \text{ (neutron)}}
\]
Because $\mu_B \approx 2000 \mu_N$, in the g units electrons have a much \textbf{LARGER} magnetic moment than the nucleons.

Higher spin particles may also have an \textit{intrinsic} magnetic moment.

\textbf{DIRECT EXPERIMENTS MEASURING THE MAGNETIC MOMENT AND THE SPIN OF ELECTRONS}

\textbf{Magnetic moment: STERN - GERLACH (1922)}

H atom in its ground state (actually, Ag)

\begin{itemize}
 \item Inhomogeneous magnetic field, $B \parallel z$ growing in the z-direction
\end{itemize}

\begin{equation}
U = -\vec{\mu} \cdot \vec{B} = -\mu_B B_z \text{ energy of a magnetic dipole}
\end{equation}

\begin{equation}
\vec{F} = -\nabla U \text{ The force on the dipole}
\end{equation}
\[F_z = \mu_z \frac{\partial B_z}{\partial z} = -2 \mu_B \frac{\partial B_z}{\partial z} N_z \]

\(\rightarrow \) magnetic spin number, \(\pm \frac{1}{2} \)

Particles with spin up go down, particles with spin down go up.

Spin: EINSTEIN - DE HAAS (1925)

Homogeneous magnetic field

\[\vec{\mu} \text{'s of the electron aligned along } \vec{B}, \text{ giving rise to the total magnetic moment } \vec{M}, \text{ spins antialigned, leading to the spin angular momentum } \vec{S} \]

\[\vec{B} \]

Magnetic field suddenly switches direction, leading to the realignment of magnetic moments and the spins.

\[\vec{B} \]

\[\Delta S = 2S \] by conservation of the total angular momentum leads to the sample turning clockwise.
THE PAULI EQUATION

The Schrödinger equation for a non-relativistic particle with spin \hat{S} which is moving in an external electromagnetic field.

(Written by Pauli originally for an electron.)

Recall that $\vec{\mu} = \mu \hat{S}$.

$- \vec{\mu} \cdot \vec{B}(x)$... potential energy of a magnetic dipole $\vec{\mu}$ in the magnetic field \vec{B}

$= - \mu \hat{S} \cdot \vec{B}$ for a spinning particle.

This leads to the Hamilton operator

$\hat{H} = \left(\frac{1}{2m} \hat{P}^2 - \frac{e}{c} \hat{A} \cdot \vec{A} \right) \hat{1} - \mu \hat{S} \cdot \vec{B}$.

unit operator in the spin space
In particular, for electrons \(e = -\frac{|e|}{e} \) and elementary charge

\[
\hat{H} = \frac{1}{2m} \left(|\hat{p}|^2 + \frac{|e|}{c} |\hat{A}|^2 - |e| |\hat{\phi}|^2 \right) \mathbb{1} + \mu_B \overrightarrow{B} \cdot \vec{\sigma}.
\]

\(\vec{\sigma} \rightarrow \) Bohr's magneton

The \textbf{Pauli equation}:

\[
\text{i} \hbar \frac{d}{dt} \left| \psi(t) \right\rangle = \hat{H} \left| \psi(t) \right\rangle.
\]

Here, \(\left| \psi \right\rangle \in \mathcal{H}(\frac{1}{2}) \) space spanned by \(|x, s_3\rangle \).

\(\mathcal{H}(\frac{1}{2}) \) mixes the components of the spinor field belonging to different values of \(s_3 \).

Spin Precession

A spin-\(\frac{1}{2} \) particle of charge \(e \) moves in a homogeneous magnetic field \(\overrightarrow{B} \) directed along \(\mathbb{1} \).

The vector potential \(\vec{A} \) and scalar potential \(\overrightarrow{\Phi} \).

The Hamiltonian \(\hat{H} \):

\[
\hat{H} = \left\{ \frac{1}{2m} \left(|\hat{p}|^2 - \frac{e}{c} |\hat{A}|^2 \right) \mathbb{1} - \mu B \overrightarrow{B} \cdot \vec{\sigma} \right\} + \mu B \overrightarrow{B} \cdot \vec{\sigma},
\]

The spin depends only on \(\vec{r} \) and \(\hat{p} \).

The scalar potential \(\overrightarrow{\Phi} \).
The Pauli equation for the state function
\[\langle A, \vec{x} | \psi \rangle = \psi^A(\vec{x}) \] separates:

\[\psi^A(\vec{x}, t) = \frac{u(\vec{x}, t)}{\phi^A(t)} \]

ORBITAL PART **SPIN PART**

The orbital part satisfies the Schrödinger equation
\[i\hbar \frac{\partial u(\vec{x}, t)}{\partial t} = \hat{H}_{\text{orb}} u(\vec{x}, t) \]
and the spin part satisfies the equation
\[i\hbar \frac{\partial \phi^A(t)}{\partial t} = -\mu B \left(\vec{m} \cdot \vec{\alpha} \right)^A_B \phi^B(t). \]

Abstractly,
\[\hat{H}_{\text{spin}} \]

\[i\hbar \frac{\partial}{\partial t} | \phi(t) \rangle = \hat{H}_{\text{spin}} | \phi(t) \rangle. \]

The evolution operator \(\hat{U}(t, 0) \) of the spin state is
\[\hat{U}(t, 0) = e^{-\frac{i}{\hbar} \hat{H}_{\text{spin}} t} = e^{\frac{i}{2} \frac{\mu B}{\hbar} (\vec{m} \cdot \vec{\alpha}) t} \]

It is identical to the rotation operator \(\hat{R}(\varphi, \vec{\alpha}) \)

with \(\varphi = -\frac{\mu B}{\hbar} t \)

\(\omega \) ... a frequency
It transforms the initial state $|\phi\rangle := |\phi(0)\rangle$

into the final state

$$|\phi(t)\rangle = \hat{U} \hat{R} \left(\varphi, \vec{n} \right) |\phi\rangle.$$

We know that $|\phi\rangle$ must be an eigenvector of the spin operator $\hat{\vec{s}} \cdot \vec{m}$ in some direction \vec{m}, and similarly $|\phi(t)\rangle$ must be an eigenvector of the spin operator $\hat{\vec{s}} \cdot \vec{m}(t)$ in some direction $\vec{m}(t)$. It is easy to see that

$$m_a(t) = R^a_b \left(\varphi, \vec{n} \right) m_b.$$

We can interpret this equation as saying that the spin rotates about the direction \vec{m} of the magnetic field with the angular velocity $\omega = -\mu B / \hbar$.

The last equation can also be written as

$$\vec{m}(t) = \vec{m} \cos \varphi + (\vec{m} \cdot \vec{n}) \vec{n} (1 - \cos \varphi) + (\vec{n} \times \vec{m}) \sin \varphi.$$
After the time $\Delta t = \frac{2\pi}{\omega}$, the spin returns to its original direction, but the spin state vector changes sign,

$$|\phi(\frac{2\pi}{\omega})\rangle = -|\phi(t)\rangle.$$

We want to know if such a change of sign is observable.

There is an alternative way of viewing the same problem. We do not separate \vec{E} and A, but solve the unseparated equation in the \vec{E}, \vec{A} representation:

Write

$$\hat{H} = \hat{H}_{\text{orb}} + \hat{H}_{\text{spin}}, \quad \text{with} \quad \hat{H}_{\text{spin}} = -\mu \vec{B} \cdot \vec{S}.$$

Because \hat{H}_{orb} and \hat{H}_{spin} commute, we can write

$$\psi^A (\vec{x}, t) = \langle A | e^{-\frac{i}{\hbar} \hat{H}_{\text{spin}} t} | B \rangle e^{\frac{i}{\hbar} \hat{H}_{\text{orb}} t} \psi^B (\vec{x}, 0)$$

This is the state function as it would evolve in the absence of the Pauli term \hat{H}_{spin}.

$$\psi^A (\vec{x}, t)$$

is called $\psi^A (\vec{x}, t)$.
We have

\[
U_B^A(t) = e^{ \frac{i}{2} \omega t } e^{ - \frac{i}{2} \omega t }.
\]

Hence

\[
\psi^+(\vec{x}, t) = e^{ \frac{i}{2} \omega t } \psi^0_0(\vec{x}, t),
\]

\[
\psi^-(\vec{x}, t) = e^{ \frac{i}{2} \omega t } \psi^0_0(\vec{x}, t).
\]

This is, of course, a superposition of solutions of the separated equation.

Neutron Interferometry Experiment

For Detecting the Sign Change under 2π Rotations

Let us return now to the question if the sign change of the state function after \(\Delta t = \frac{2\pi}{\omega} \) is observable.