1) Introduction

Ordinary differential equations of any order can be rewritten as a system of first order equations.

For example: \(\frac{dy}{dx}(x) + p(x) \frac{dz}{dx}(x) + q(x) y(x) = r(x) \) is equivalent to the system:

\[
\begin{align*}
\frac{dy}{dx}(x) &= \frac{dz}{dx}(x), \\
\frac{dz}{dx}(x) &= f(x, y, z, \ldots, y_n) \quad \text{with} \quad i = 0, 1, 2, \ldots, n-1
\end{align*}
\]

As a consequence, we consider problems that can be written as \(\frac{dy}{dx}(x) = f(x, y_1, y_2, \ldots, y_n) \) with \(i = 0, 1, 2, \ldots, n-1 \).

For a problem to be completely defined, we need boundary conditions: values of \(y_i \) to be reached at specific values of \(x \).

This results in two types of problems:

- **Initial value condition problems**: all the constraints on \(y_i \) are specified for a single value of \(x = x_0 \).
- **Boundary value problems**: The constraints are specified in two or more values of \(x \).

We concentrate first on initial value problems.

2) Euler's method

\(y_i(x+(k+1)h) = y_i(x+kh) + h \frac{dy}{dx}(x+kh) \quad \text{where} \quad i = 1, 2, \ldots, n \)

Example:

\[
\frac{dy}{dx} = g, \quad \frac{dz}{dx} = g \quad \text{with initial conditions} \quad y(0) = 0, \quad z(0) = 0
\]

With \(g = 100 \times x^2 \) & using time steps \(h = 0.1 \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_k)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>(y_k)</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Initial conditions

It is clear that adding a higher order term \(\frac{d^2 y}{dx^2}(x) \) at each step improves the result (making it exact in the case of a uniformly accelerated motion).

3) Modified Euler's method (predictor-corrector)

The development can indeed generally extended to higher order:

\(y_j(t+h) = y_j(t) + h \frac{dy}{dx}(t) + \frac{h^2}{2} \frac{d^2 y}{dx^2}(t) + \cdots + \frac{h^n}{n!} \frac{d^n y}{dx^n}(t) + \cdots \)

\(y_j(t+h) = y_j(t) + h \frac{dy}{dx}(t) + \frac{h^2}{2} \frac{d^2 y}{dx^2}(t) + \cdots + \frac{h^n}{n!} \frac{d^n y}{dx^n}(t) + \cdots \)

Using a development involving \(\frac{d^2 y}{dx^2}(t) \) results in an order \(p+2 \) of the error.

The use of such development suffers from the fact it uses the derivatives only at the beginning of the interval \([t, t+h] \).

It is possible to get an higher order with less work: Consider for example the development around \(t + \frac{h}{2} \):

\[
\begin{align*}
\{ y_j(t+h) - y_j(t) &= \frac{h}{2} \frac{dy}{dx}(t + \frac{h}{2}) + \frac{h^2}{8} \frac{d^2 y}{dx^2}(t + \frac{h}{2}) + \cdots \\
\{ y_j(t) = y_j(t) - \frac{h}{2} \frac{dy}{dx}(t + \frac{h}{2}) + \frac{h^2}{8} \frac{d^2 y}{dx^2}(t + \frac{h}{2}) + \cdots
\end{align*}
\]

Subtracting the two \(y_j(t+h) - y_j(t) = h \frac{dy}{dx}(t + \frac{h}{2}) + O(h) \)
Then, we can use
\[
\frac{dy}{dt} (t + \frac{1}{2}) = \frac{1}{2} \left(f(t, y(t)) + f(t + h, y(t + h)) \right)
\] and then:

\[
y(t + h) = y(t) + \frac{h}{2} \left[f(t, y(t)) + f(t + h, y(t + h)) \right] + O(h^3)
\]

\(y(t + h)\) appears on both sides of the equation.

- Sometimes it is possible to solve for \(y(t + h)\)
- Otherwise, one may use Euler's method in the right hand:

\[
y(t + h) = y(t) + \frac{h}{2} \left(f(t, y(t)) + f(t + h, y(t + h)) \right) + O(h^3)
\]

Which is the modified Euler or predictor-corrector method.

This is a special case of Runge-Kutta methods, with two stages only.

The commonly used 4-stage Runge-Kutta method proceeds as follows:

\[
k_1 = f(t, y(t)); k_2 = f(t + \frac{h}{2}, y(t) + \frac{h}{2} k_1); k_3 = f(t + \frac{h}{2}, y(t) + \frac{h}{2} k_2); k_4 = f(t + h, y(t) + h k_3)
\]

\[
y(t + h) = y(t) + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4) + O(h^5)
\]

When \(f\) depends on \(t\) only, it is the same as Simpson's rule.

Simple pendulum

As an example of differential equation integration, we are going to consider the simple pendulum.

We can obtain the equation of motion in two equivalent ways:

1. **Fundamental relation of dynamics along direction \(\hat{\theta}\):**

 \[m \ddot{\theta} = \frac{d}{dt} (m \ell \dot{\theta}) = -mg \sin \theta \]

 So, \[\frac{d^2 \theta}{dt^2} = - \frac{g}{\ell} \sin \theta \]

2. **Torque & moment of inertia:**

 \[\tau = \ell \ddot{\theta} \]

 with \(\tau = \frac{1}{2} m \ell^2 \) the pendulum moment of inertia

 and \(\ddot{\theta} \) the angular acceleration pointing out of the diagram, along \(\hat{\theta} \) for counterclockwise angular accelerations.

3. The \(z\)-component of this equation then is \[m \ell \dddot{\theta} = - \ell m g \sin \theta \]

 and again \[\frac{d^2 \theta}{dt^2} = - \frac{g}{\ell} \sin \theta \]

4. In the small angle limit \(\theta \ll 1 \), this becomes \[\frac{d^2 \theta}{dt^2} = - \frac{g}{\ell} \theta \]

5. The 2nd order differential equation can be recast in a system of two 1st order equations:

 For this system, an initial value problem can be specified by \(\theta_0(t=0) \) & \(\dot{\theta}(t=0) \): \[
 \begin{align*}
 \frac{d\theta}{dt} &= \theta_0 \\
 \frac{d\theta_0}{dt} &= -\omega^2 \sin \theta
 \end{align*}
 \]