This problem must be handed in on paper according to the rules for group homework problems.

[Problem 8-69] A ball having mass \(m \) is connected by a strong string of length \(L \) to a pivot point and held in place in a vertical position. A wind exerting constant force of magnitude \(F \) is blowing from left to right as in the figure. (a) If the ball is released from rest, show that the maximum height \(H \) reached by the ball, as measured from its initial height, is

\[
H = \frac{2L}{1 + \left(\frac{mg}{F}\right)^2}
\]

Check that the above result is valid both for cases when \(0 < H < L \) and for \(L < H < 2L \). (b) Compute the value of \(H \) using the values \(m = 2.00 \text{ kg} \), \(L = 2.00 \text{ m} \), and \(F = 14.7 \text{ N} \). (c) Using these same values, determine the equilibrium height of the ball. (d) Could the equilibrium height ever be larger than \(L \)? Explain.

(a) We can use conservation of energy to solve this problem.

\[
\begin{align*}
\mathcal{E}_i^0 + \mathcal{E}_f^0 + W &= \mathcal{E}_f^0 + mgH \\
(\mathcal{E}_i^0 &= 0) \quad (H = 0) \quad (\mathcal{E}_f^0 = 0)
\end{align*}
\]

\[
W = F \cdot x = mgH
\]

By the Pythagorean Theorem:

\[
x = \sqrt{L^2 - (L-H)^2} = \sqrt{2LH - H^2}
\]

Since \(F \) is parallel to \(x \),

\[
W = F \cdot x = F \cdot (\cos 0^\circ) = F \cdot x = F \sqrt{2LH - H^2} = mgH
\]

Square both sides:

\[
F^2 (2LH - H^2) = (mg)^2 H^2 \Rightarrow F^2 (2L - H) = (mg)^2 H
\]

Solving for \(H \):

\[
H = \frac{2LF^2}{F^2 + (mg)^2} \left(\frac{1/F^2}{1/F^2} \right) \text{ multiply by 1}
\]

\[
H = \frac{2L}{1 + \left(\frac{mg}{F}\right)^2} = H
\]
Checking the cases:

1) For \(H \to 0 \), it is easier to use the formula for \(F^2 \):

\[F^2 = \frac{(mgH)^2}{2LH-H^2} = \frac{(mg)^2 H}{2L - H} \]

So

\[\lim_{H \to 0} F^2 = \frac{0}{2L} = 0 \Rightarrow \text{no } F, \text{ thus there is no height } H \text{ if there is no } F. \]

2) If \(H = L \):

\[F \sqrt{2L(L) - (L)^2} = mgL \]
\[F \sqrt{2L^2 - L^2} = mgL \]
\[FL = mgL \Rightarrow F = mg \checkmark \]

3) For \(H \to 2L \), it is easier to see how \(H \) behaves as \(F \to \infty \):

\[\lim_{F \to \infty} H = \frac{2L}{1 + \left(\frac{mg}{F} \right)^2} = 2L. \]

This limit exists, but it would be hard to approach experimentally.

(b) \[H = \frac{2(2 \text{ m})}{1 + \left[\frac{(2 \text{ kg})(9.8 \text{ m/s}^2)}{14.7 \text{ N}} \right]^2} = 1.44 \text{ m} \]
(c) Let $\theta = \text{equilibrium angle with the vertical}:

\[\Sigma F_x = -T \sin \theta + F = m_x \]
\[\Sigma F_y = mg - T \cos \theta = m_y \]

So,
\[T \sin \theta = F \]
\[T \cos \theta = mg \]

Dividing:
\[\tan \theta = \frac{F}{mg} = \frac{14.7 \text{N}}{19.6 \text{N}} = 0.75 \]
\[\therefore \theta = 36.9^\circ \]

Thus,
\[H_{eq} = L - L \cos \theta = L (1 - \cos \theta) = (2m)(1 - \cos 36.9^\circ) = 0.400 \text{m} \]

(d) As $F \to \infty$, $\tan \theta \to \infty$, $\theta \to 90^\circ$, so $H_{eq} \to L$.

A very strong wind pulls the string out horizontal, parallel to the ground.

\[\therefore (H_{eq})_{\text{max}} = L \]